

ZEAL EDUCATION SOCIETY'S

ZEAL POLYTECHNIC, PUNE

Question Bank for Multiple Choice Questions

Program: All Programs in Diploma Engineering	Program Code: - CE/CO/ME/EE/EJ
Scheme:-I	Semester:- 1
Course:- Basic Mathematics	Course Code:- 22103

01 – Algebra	Marks:-20	
Content of Chapter:-		
1.1 Logarithms		
1.2 Determinants		
1.3 Matrices	12 2 2 2	
1.4 Partial Fractions		

1.1 Logarithms

- 1. The value of : $\log_a 1 = ---$
 - (A) 1

(B) 2

(C) 0

(D) a

Answer: - Option C

Explanation: - Basic Property of logarithm

- 2. The value of: $\log_{10} 10 = ----$
 - (A) 1

(B) 2

(C) 0

(D) a

Answer: - Option A

Explanation: - Basic Property of logarithm

- 3. The value of $\log_a a = ----$
 - (A) 1

(B) 2

(C) 0

(D) a

Answer: - Option A

Explanation: - Basic Property of logarithm

4.	The value of:	$\log_{81} 3_{\blacksquare}$	
----	---------------	------------------------------	--

(A) 3

(B) $\frac{1}{4}$

(C) 81

(D) $\frac{2}{4}$

Answer: - Option B

Explanation: - Converting into Exponential form

5. The value of:
$$\log_{5} 625 =$$

(A) 4

(B) 5

(C)25

(D) 625

Answer: - Option A

Explanation: - Converting into Exponential form

- 6. The value of: $\log_3 81 =$
 - (A) 81

(B) 3

(C) 1

(D) 4

Answer: - Option D

Explanation: - Converting into Exponential form

- 7. The value of : $\log_{343} 7 =$
 - (A) $\frac{1}{3}$

(B) ²

 $\frac{1}{(C)}$

(D) $\frac{1}{5}$

Answer: - Option A

Explanation: - Converting into Exponential form

- 8. The value of x if $\log_3 27 = x$
 - (A) 1

(B) 2

(C) 3

(D) 4

Answer: - Option C

Explanation: - Converting into Exponential form

- 9. The value of x if $\log_2(x-3) = 3$
 - (A) 3

(B) 2

(C) 11

(D) 10

Answer: - Option C

Explanation:- Converting into Exponential form

- 10. The value of x if- $\log_2(x^2 6x + 40) = 5$
 - (A) 4

(B) 2

(C) 4, 2

(D) 3

Answer: - Option C

Explanation: - Converting into Exponential form

- 11. The value of x if $\log_3(x+6) = 2$
 - (A) 3

(B)6

(C) 2

(D)1

Answer: - Option A

Explanation: -Converting into Exponential form

12.

 $\log_a\!\left(\frac{m}{n}\right) = -----$

If m, n, a are positive real numbers and $a \ne 1$ then

(A) $\log_a m - \log_a n$

(B) $\log_a m + \log_a n$

(C)) $\log_a m \log_a n$

(D) $\frac{\log_a m}{\log_a n}$

Answer: - Option A

Explanation: - Basic Property of logarithm

- 13. If m and a are positive real numbers. $a \ne 1$ then $\log_a(m)^n =$
 - (A) $\log_a m \log_a n$

(B) $\log_a m + \log_a n$

(C) $n \log_a m$

(D) $\log_a m \log_a n$

Answer: - Option C

Explanation: - Basic Property of logarithm

14.	If m, n, a are positive real numbers then	$\log_a(mn) =$
	(A) $\log_a m - \log_a n$	(B) $\log_a n$

$$(C) \log_a m \log_a n$$

(B)
$$\log_a m + \log_a n$$

(C)
$$\log_a m \log_a n$$

(D)
$$\frac{\log_a m}{\log_a n}$$

Answer: - Option B

Explanation: - Basic Property of logarithm

15. The value of x if $\log_3(x+5) = 4$

$$(A) x = 81$$

(B)
$$x = 86$$

(C)
$$x = 76$$

(D)
$$x = 91$$

Answer: - Option C

Explanation: - Converting into Exponential form

16. $\log\left(\frac{2}{3}\right) + \log\left(\frac{4}{5}\right) - \log\left(\frac{8}{15}\right)$

The value of

Answer: - Option D

Explanation: - Use logarithm of product and quotient

 $\log\left(\frac{225}{32}\right) - \log\left(\frac{25}{81}\right) + \log\left(\frac{64}{729}\right)$ 17. The value of

(A) log 5

(C) log 2

Answer: - Option C

Explanation: - Use logarithm of product and quotient

The value of : $\frac{1}{\log_3 6} + \frac{1}{\log_8 6} + \frac{1}{\log_9 6} =$ 18.

(A) 3

(B)6

(C)8

(D) 9

Answer: - Option A

Explanation: - By Rule of change of base

19.

The value of
$$\frac{1}{\log_{ab}abc} + \frac{1}{\log_{bc}abc} + \frac{1}{\log_{ac}abc} =$$

(A) 4

(B)3

(C)2

(D) 1

Answer: - Option C

Explanation: - By Rule of change of base

20.

$$\log \left(\frac{p^2}{qr}\right) + \log \left(\frac{q^2}{rp}\right) + \log \left(\frac{r^2}{pq}\right) = ---$$
 The value of :

(A) 1

(B)2

(C) 3

Answer: - Option D

Explanation: Use logarithm of product

The value of :
$$\log_y x^2 \times \log_z y^3 \times \log_x z^4 = ----$$

(A) 24

(B) 34

(C)44

(D) 54

Answer: - Option A

Explanation: - Use log of power and Rule of change of base

22.

The value of :
$$\frac{1}{\log_6 24} + \frac{1}{\log_{12} 24} + \frac{1}{\log_8 24} = ---$$

(A) 1

(B)2

(C) 3

(D) 4

Answer: - Option B

Explanation: - Use log of power and Rule of change of base

1.2 Determinants

23. Value of determinant $\begin{vmatrix} 5 & 3 \\ 2 & 4 \end{vmatrix} = \dots$

(A) -14

(B) 14

(C) 12

(D) -12

Answer: - Option B

Explanation: = (5X4)-(3X2)

24. Value of determinant $\begin{vmatrix} 2 & -4 \\ 2 & -1 \end{vmatrix} = \dots$

(A) -2

(B) 0

(C)-4

(D) 6

Answer: - Option D

Explanation: - = (2X(-1)) - (2X(-4))

25. Value of determinant $\begin{vmatrix} sin\theta & cos\theta \\ -cos\theta & sin\theta \end{vmatrix} = ...$

(A) 2

(B) 0

(C) -1

(D) 1

Answer: - Option D

Explanation: - By evaluating determinant

26. Value of determinant $\begin{vmatrix} 2 & 3 & 5 \\ 1 & 4 & 2 \\ 3 & 1 & 6 \end{vmatrix} = ...$

(A)-10

(B) 12

(C) -11

(D)-12

Answer: - Option C

Explanation:- By evaluating determinant

27. Value of determinant $\begin{vmatrix} 1 & 0 & 6 \\ 7 & 2 & 5 \\ 3 & 4 & 6 \end{vmatrix} = ...$

(A) 138

(B) 124

(C) 110

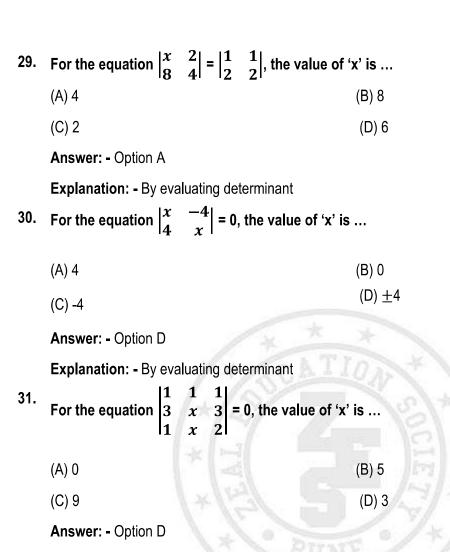
(D) 120

Answer: - Option B

Explanation: - By evaluating determinant

28. For the equation $\begin{vmatrix} x & 4 \\ 3 & 6 \end{vmatrix} = 0$, the value of 'x' is ...

(A) 0


(B) 2

(C) 1

(D) -1

Answer: - Option B

Explanation: - By evaluating determinant

Explanation: - By evaluating determinant

The solution of the system of equations 32.

$$x + y + z = 6$$
, $2x + y - 2z = -2$, $x + y - 3z = -6$ is

(A) 1,1,1

(B) 1,2,3

(C) 0,1,1

(D) 1,0,-1

Answer: - Option A

Explanation: - Use Cramer's rule for finding values of x,y,z

The solution of the system of equations 33. x + z = 4, y + z = 2, x + y = 0 is

(A) 3,1,0

(B) 1,-1,3

(C) 0,1,3

(D))-3,0,-1

Answer: - Option B

Explanation: Use Cramer's rule for finding values of x,y,z

34.	The voltages in an electric circuit are related by + V_2 - V_3 =1 Then values of V_1 , V_2 , V_3 are	the equations. $V_1 + V_2 + V_3 = 9$, $V_1 - V_2 + V_3 = 3$, V_1
	(A) 2,3,4	(B) 1,2,3
	(C) 1,1,1	(D) 1,3,5
	Answer: - Option A	
35.	Explanation: - Use Cramer's rule for finding values of x,y,z The value of determinant 'D' in the system of equations x - y - 2z = 1, $2x + 3y + 4z = 4$, $3x - 2y - 6z = 5$ is	
	(A) -8	(B)-16
	(C) 8	(D) 16
	Answer: - Option A	
36.	Explanation: -Writing all equations in determinant The value of 'y' in the system of equations x + y + z = 3, $x - y + z = 1$, $x + y - 2z = 0$ is	form and evaluate determinant D.
	(A) 0	(B)1
	(C) 2	(D) 3
	Answer: - Option B	
	Explanation: -Use Cramer's rule and solve for y	
	1.3 Matrices	
37.	In a square matrix	1906
	(A) number of rows and columns are equal	(B) number of rows and columns are not equal
	(C) number of rows is greater than columns	(D) number of columns is greater than rows
	Answer: - Option A	
38.	Explanation: -By using definition of square matrix Order of the matrix [1 2 -4 0] is	
	(A) 1×1	(B) 1 × 4
	(C) 4×1	(D) 4×4
	Answer: - Option B	
	Explanation: - Order = number of rows into number	r of columns

- 39. Which of the following is scalar matrix...?
 - (A) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

 $(B)\begin{bmatrix} 3 & 0 \\ 0 & 7 \end{bmatrix}$ $(D)\begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$

(C) $\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$

Answer: - Option D

Explanation: -Use Defination of Scalar matrix

- 40. If $A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 7 \\ 1 & 9 \end{bmatrix}$, then 2A+3B = ...(A) $\begin{bmatrix} 12 & 35 \\ 18 & 19 \end{bmatrix}$ (C) $\begin{bmatrix} 22 & 15 \\ 13 & 45 \end{bmatrix}$

Answer: - Option B

Explanation: - Use Multiplication to matrix by scalar and then addition of matrices

- 41. If $\begin{bmatrix} 4 & 5 \\ -3 & 6 \end{bmatrix} + X = \begin{bmatrix} 10 & -1 \\ 0 & -6 \end{bmatrix}$, then matrix X = ...
 - $\begin{array}{ccc}
 \text{(A)} \begin{bmatrix} 3 & 6 \\ 2 & -10 \end{bmatrix} \\
 \text{(C)} \begin{bmatrix} 2 & 8 \\ 10 & 9 \end{bmatrix}$

(B) $\begin{bmatrix} 6 & -6 \\ 3 & -12 \end{bmatrix}$ (D) $\begin{bmatrix} 5 & -8 \\ 1 & 5 \end{bmatrix}$

Answer: - Option B

Explanation: -Use Subtraction of matrices

- 42. If $\begin{bmatrix} -3 & x \\ 2y & 0 \end{bmatrix} + \begin{bmatrix} 4 & 6 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 7 \\ -5 & 1 \end{bmatrix}$, then values 'x'& 'y' are ...
 - (A) 1,-2

(B) 0,1

(C) 2,0

(D) 1,-1

Answer: - Option D

Explanation: -. Use Addition and Equality of matrices

- 43. If order of matrix 'A' is 2×3 and order of matrix 'B' is 3×4 , then order of their multiplication matrix 'AB' is ...
 - $(A) 2 \times 2$

- (C) 2×4
- (B) 3×3 (D) 4×4

Answer: - Option C

Explanation: - Use Inner product of Matrices

- If $A = \begin{bmatrix} 3 & 4 & -2 \\ 2 & 1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 2 & -1 \\ 3 & 4 \\ 0 & 2 \end{bmatrix}$, then (AB) =

(B) $\begin{bmatrix} 6 & 9 \\ 7 & -12 \end{bmatrix}$ (D) $\begin{bmatrix} 2 & 18 \\ 6 & 9 \end{bmatrix}$

Answer: - Option A

Explanation: -. Use Multiplication of 2 Matrices

Answer: - Option O

Explanation: - Use Property of Transposition of Matrices

- 51. The matrix 'A' is called singular iff |A| ...
 - (A) = 0

(B) = I

 $(C) \neq 0$

(D) = A

Answer: - Option C

Explanation: - Use Defination of singular Matrix

- 52. |AB| = ...
 - (A) A

(B) |B|

(C)) I

(D) |A||B|

Answer: - Option D

Explanation: - Use Property of Determinant of Matrices

- 53. The matrix $\begin{bmatrix} 4 & 6 \\ 2 & 3 \end{bmatrix}$ is ...
 - (A) singular

(B) non-singular

(C) symmetric

(D) skew-symmetric

Answer: - Option A

Explanation: -. As determinant is zero hence singular matrix

- In the matrix $\begin{bmatrix} 1 & 2 & 3 \\ -4 & 5 & 6 \\ -7 & 8 & 9 \end{bmatrix}$, then minor of element '6' is ... 54.
 - (A) 12

(C) 42

(D) 22

Answer: - Option D

Explanation: - Solve determinant by eliminating second row and third coloumn.

- In the matrix $\begin{bmatrix} 2 & -3 & 4 \\ 0 & 1 & -5 \\ 6 & 2 & -4 \end{bmatrix}$, cofactor of element '0' is ... 55.
 - (A) -4

(C) 20

(D) -20

Answer: - Option A

Explanation: - Solve determinant by eliminating second row and first column

- 56. The adjoint of matrix $\begin{bmatrix} 6 & 5 \\ 2 & 1 \end{bmatrix}$ is ...
 - $(A)\begin{bmatrix}1 & -9\\7 & 2\end{bmatrix}$

 $\begin{array}{c}
\text{(B)} \begin{bmatrix} 6 & 9 \\ 7 & -12 \end{bmatrix} \\
\text{(D)} \begin{bmatrix} 2 & 1 \\ -6 & -9 \end{bmatrix}$

 $(C)\begin{bmatrix} 1 & -5 \\ -2 & 6 \end{bmatrix}$

Answer: - Option C

Explanation: - Find Cofactors and matrix of cofactors

- 57. Inverse of a square matrix 'A' exists, iff A is ...
 - (A) singular

(B) non-singular

(C)) symmetric

(D) skew-symmetric

Answer: - Option B

Explanation: - Condition Of Inverse of a matrix

- 58. $A A^{-1} = ...$
 - $(A) A^T$

(B) null matrix

(C) I

(D) none of these

Answer: - Option C

Explanation: -. Property Of Inverse of a matrix

- 59. $(A^{-1})^{-1} = ...$
 - (A) O

(B) A

(C) I

(D) none of these

Answer: - Option B

Explanation: - Property Of Inverse of a matrix.

- If $A = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$, then $A^{-1} = \dots$ 60.

Answer: - Option A

Explanation: - Find adjoint and determinant of matrix

- 61. If $A = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}$, then $A^{-1} = ...$

Answer: - Option D

Explanation: - Find adjoint and determinant of matrix

- 62. Which of the following is proper fraction?
 - (A) $\frac{X-2}{X^3+1}$

(B) $\frac{X^3+1}{X-2}$ (D) $\frac{X^3+1}{X^4}$

(C) $\frac{X^4}{X^3+1}$

Answer: - Option A

Explanation: - Defination of proper fraction

63. Which of the following is improper fraction?

(A)
$$\frac{X-2}{X^3+1}$$

(B)
$$\frac{X^3+1}{(X-2)^4}$$

(C)
$$\frac{X^3+1}{X^4}$$

(D)
$$\frac{X^4}{X^3+1}$$

Answer: - Option D

Explanation: - Defination of Improper fraction

64. Which of the following has irreducible Quadratic Denominator?

(A)
$$\frac{x-2}{x^2-4}$$

(B))
$$\frac{x-1}{x^2+4}$$

(C)
$$\frac{x-4}{x^3-9}$$

(D)
$$\frac{x-4}{x^2-9}$$

Answer: - Option B

Explanation: - Defination of irreducible quadratic factor

65. Which of the following has reducible Quadratic Denominator?

(A)
$$\frac{x-2}{x^2-4}$$

(B)
$$\frac{x-4}{x^2+9}$$

(C)
$$\frac{x-4}{x^3+9}$$

(D)
$$\frac{x-1}{x^2+4}$$

Answer: - Option A

Explanation: - Defination of reducible quadratic factor

66. The partial fractions of $\frac{x}{x^2+x-2}$ are

(A)
$$\frac{1}{3} \left[\frac{2}{x+2} + \frac{1}{x-1} \right]$$

(B)
$$\frac{1}{2} \left[\frac{3}{x+2} - \frac{1}{x-1} \right]$$

(C)
$$\frac{1}{2} \left[\frac{3}{x+2} + \frac{1}{x-1} \right]$$

$$(D)\frac{1}{3}\left[\frac{2}{r+2}-\frac{1}{r-1}\right]$$

Answer: - Option C

Explanation: - Denominator has non repeated linear factors

67. Values of A and B in partial fraction of $\frac{e^x+1}{(e^x+2)(e^x+3)}$ are

$$(A) -1,2$$

Answer: - Option A

Explanation: - Denominator has non repeated linear factors, put $e^x = t$

68. Partial fraction of $\frac{1}{x^3-x}$ are

(A))
$$\frac{1}{2} \left[\frac{1}{x+1} + \frac{1}{x-1} \right] + \frac{1}{x}$$

(B)
$$\frac{1}{2} \left[\frac{1}{x+1} - \frac{1}{x-1} \right] - \frac{1}{x}$$

(C)
$$\frac{1}{2} \left[\frac{1}{x+1} - \frac{1}{x-1} \right] + \frac{1}{x}$$

(D)
$$\frac{1}{2} \left[\frac{1}{x+1} + \frac{1}{x-1} \right] - \frac{1}{x}$$

Answer: - Option D

Explanation: - Denominator has non repeated linear factors

69. Partial fraction of
$$\frac{1}{1-x^2}$$
 are

(A)
$$\frac{1}{2} \left[\frac{1}{1+x} + \frac{1}{1-x} \right]$$

(B)
$$\frac{1}{2} \left[\frac{1}{1+x} - \frac{1}{x-1} \right]$$

$$(C)\frac{1}{2}\left[\frac{1}{1+x}-\frac{1}{1-x}\right]$$

(D)
$$\frac{1}{2} \left[\frac{1}{1+x} + \frac{1}{x-1} \right]$$

Answer: - Option A

Explanation: - Denominator has non repeated linear factors

70. Partial fraction of $\frac{1}{x^2-x}$ are

$$(\mathsf{A})\,\frac{1}{x-1}-\frac{1}{x}$$

$$(\mathsf{B})\,\frac{1}{x}-\frac{1}{x-1}$$

(C)
$$\frac{1}{x} + \frac{1}{x-1}$$

(D)
$$\frac{1}{x-1} + \frac{1}{x}$$

Answer: - Option A

Explanation: - Denominator has non repeated linear factors

71. Partial fraction of $\frac{1}{x^2+3x+2}$ are

(A)
$$\frac{1}{x+2} - \frac{1}{x+1}$$

(B)
$$\frac{1}{x+1} - \frac{1}{x+2}$$

$$(\mathsf{C})\,\frac{1}{x+2}+\frac{1}{x+1}$$

(B)
$$\frac{1}{x+1} - \frac{1}{x+2}$$

(D) $\frac{1}{x+2} + \frac{2}{x+1}$

Answer: - Option B

Explanation: - Denominator has non repeated linear factors

72. Proper fraction after polynomial division of $\frac{x^2+1}{x^2-1}$ is

(A)
$$\frac{2}{x^2-1}$$

(B)
$$\frac{2}{x^2+1}$$

(C)
$$\frac{1}{x^2-1}$$

(D)
$$\frac{1}{x^2+1}$$

Answer: - Option A

Explanation: - Taking actual polynomial division

73. Proper fraction after polynomial division of $\frac{x^4}{x^3+1}$ is

(A)
$$\frac{x}{x^3+1}$$

(B)
$$\frac{-x}{x^3+1}$$

(C)
$$\frac{x}{x^3-1}$$

$$(\mathsf{D})\,\frac{-x}{x^3-1}$$

Answer: - Option B

Explanation: - Converting it into proper fraction

74. Partial fraction of $\frac{1}{x^2-1}$ are

$$(A) \frac{1}{2} \left[\frac{1}{x-1} - \frac{1}{x+1} \right]$$

(B)
$$\frac{1}{2} \left[\frac{1}{x+1} - \frac{1}{x-1} \right]$$

(C)
$$\frac{1}{2} \left[\frac{1}{x-1} + \frac{1}{x+1} \right]$$

(D)
$$\frac{1}{3} \left[\frac{1}{x+1} - \frac{1}{x-1} \right]$$

Answer: - Option A

Explanation: - Denominator has non repeated linear factors

75. Partial fraction of $\frac{x-2}{x^2-x}$ are

(A)
$$\frac{2}{x} + \frac{1}{x^2 - 1}$$

(B)
$$\frac{2}{x} - \frac{1}{x-1}$$

(C)
$$\frac{2}{x} + \frac{1}{x^2 + 1}$$

(D)
$$\frac{2}{x} - \frac{1}{x^2 + 1}$$

Answer: - Option B

Explanation: - Denominator has non repeated linear factors

76. Partial fraction of
$$\frac{x^2-x+3}{(x-2)(x^2+1)}$$
 are

(A)
$$\frac{1}{x-2} + \frac{1}{x^2+1}$$

(B)
$$\frac{1}{x-2} - \frac{1}{x^2+1}$$

(C)
$$\frac{1}{x-2} - \frac{1}{x^2-1}$$

(D)
$$\frac{1}{x+2} - \frac{1}{x^2-1}$$

Answer: - Option B

Explanation: - Denominator has irreducible quadratic factor

77. Partial fraction of $\frac{x+4}{x^2+x}$ are

$$(A) \frac{4}{x} - \frac{3}{x-1}$$

(B)
$$\frac{4}{x} + \frac{3}{x-1}$$

(C)
$$\frac{4}{x} + \frac{3}{x+1}$$

(D)
$$\frac{4}{x} - \frac{3}{x+1}$$

Answer: - Option D

Explanation: - Denominator has non repeated linear factors

78. Partial fraction of $\frac{x-1}{x(x^2+1)}$ are

$$(A)\frac{x+1}{x^2+1}-\frac{1}{x}$$

(B)
$$\frac{x+1}{x^2-1} - \frac{1}{x}$$

(C)
$$\frac{x+1}{x^2+1} + \frac{1}{x}$$

(B)
$$\frac{x+1}{x^2-1} - \frac{1}{x}$$

(D) $\frac{x-1}{x^2+1} - \frac{1}{x}$

Answer: - Option A

Explanation: - Denominator has irreducible quadratic factor

79. Partial fraction of $\frac{x^3}{x^2-1}$ are

(A)
$$x + \frac{1}{2} \left[\frac{1}{x-1} + \frac{1}{x+1} \right]$$

(B)
$$x - \frac{1}{2} \left[\frac{1}{x-1} - \frac{1}{x+1} \right]$$

(C)
$$x - \frac{1}{2} \left[\frac{1}{x-1} + \frac{1}{x+1} \right]$$

(D)
$$x + \frac{1}{2} \left[\frac{1}{x-1} - \frac{1}{x+1} \right]$$

Answer: - Option A

Explanation: - Converting it into proper fraction

80. Partial fraction of $\frac{x-2}{x^2-x}$ are

$$(A)\frac{2}{x} + \frac{1}{x-1}$$

$$(\mathsf{B})\,\frac{2}{x}-\frac{1}{x-1}$$

(C)
$$\frac{2}{x} - \frac{1}{x+1}$$

(D)
$$\frac{2}{x} + \frac{3}{x+1}$$

Answer: - Option B

Explanation: - Denominator has non repeated linear factors

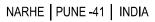
81. Partial fraction of $\frac{x+1}{x^3-x^2}$ are

(A)
$$\frac{2}{x-1} - \frac{2}{x} + \frac{1}{x^2}$$

(B)
$$\frac{2}{x+1} - \frac{2}{x} + \frac{1}{x^2}$$

(C)
$$\frac{2}{x-1} - \frac{2}{x} - \frac{1}{x^2}$$

(D)
$$\frac{2}{x-1} + \frac{2}{x} - \frac{1}{x^2}$$


Answer: - Option C

Explanation: - Denominator has repeated linear factors

ZEAL EDUCATION SOCIETY'S

ZEAL POLYTECHNIC, PUNE

Question Bank for Multiple Choice Questions

Program: All Programs in Diploma Engineering	Program Code: - CE/CO/ME/EE/EJ
Scheme: - I	Semester: - 1
Course: - Basic Mathematics	Course Code: - 22103

02 – Trigonometry	Marks: - 14
Content of Chapter:-	
5.1 Range, coefficient of range of discrete and grouped data.	
5.2 Mean deviation and standard deviation from mean of grouped and ungrouped data, weighted means.	
5.3 Variance and coefficient of variance.	1 20 1 30 1
5.4 Comparison of two sets of observation.	

1.	If A and B are two angles then A+B is called	
••	(A) Compound Angle	(B) Allied Angle
	(C) Multiple Angle	(D) Sub-multiple angle
	Answer: - Option A	
	Explanation: By definition of compound angle	
2.	$\sin(A+B)$ =	
	(A) $\sin A \cos B - \cos A \sin B$	(B) $\cos A \cos B + \sin A \sin B$
	(C) $\cos A \cos B - \sin A \sin B$	(D) $\sin A \cos B + \cos A \sin B$
	Answer: - Option D	
	Explanation: - By Formula $sin(A + B) = sin A co$	$\cos B + \cos A \sin B$
3.	$\sin(A-B) = \underline{\hspace{1cm}}$	
	(A) $\sin A \cos B - \cos A \sin B$	(B) $\cos A \cos B + \sin A \sin B$
	(C) $\cos A \cos B - \sin A \sin B$	(D) $\sin A \cos B + \cos A \sin B$
4.	Answer: - Option A Explanation: By Formula $sin(A - B) = sin A c$ cos(A - B) =	$\cos B - \cos A \sin B$
	(A) $\sin A \cos B - \cos A \sin B$	(B) $\cos A \cos B + \sin A \sin B$
	(C) $\cos A \cos B - \sin A \sin B$ Answer: - Option B	(D) $\sin A \cos B + \cos A \sin B$

Explanation: - By Formula cos(A - B) = cos A cos B + sin A sin B

 $\cos(A + B) =$ 5. (A) $\sin A \cos B - \cos A \sin B$ (B) $\cos A \cos B + \sin A \sin B$ (C) $\cos A \cos B - \sin A \sin B$ (D) $\sin A \cos B + \cos A \sin B$ Answer: - Option C **Explanation:** - By Formula cos(A + B) = cos A cos B - sin A sin B6. Answer: - Option C **Explanation:** -. By Formula $tan(A - B) = \frac{tan A - tan B}{1 + tan A tan B}$ $\tan(A+B) =$ 7. Answer: - Option A **Explanation:** - According to definition of Variance. $\sin A \cos B + \cos A \sin B$ is an expansion of... 8. $(A) \cos(A - B)$ (B) $\sin(A - B)$ (C) sin(A + B)(D) cos(A + B)Answer: - Option C **Explanation:** - By Formula sin(A + B) = sin A cos B + cos A sin B $\sin A \cos B - \cos A \sin B$ is an expansion of... 9. $(A) \cos(A - B)$ (B) $\sin(A - B)$ (D) cos(A + B)(C) sin(A + B)Answer: - Option B **Explanation:** - By Formula sin(A - B) = sin A cos B - cos A sin B $\cos A \cos B - \sin A \sin B$ is an expansion of... 10. $(A) \cos(A - B)$ (B) $\sin(A - B)$

Answer: - Option D

(C) sin(A + B)

Explanation: - By Formula cos(A + B) = cos A cos B - sin A sin B

(D) cos(A + B)

 $\cos A \cos B + \sin A \sin B$ is an expansion of... 11. $(A) \cos(A - B)$ (B) $\sin(A - B)$ $(C) \sin(A + B)$ (D) cos(A + B)Answer: - Option A **Explanation:** - By Formula cos(A - B) = cos A cos B + sin A sin B. 12. $\frac{\tan A - \tan B}{1 + \tan A \tan B}$ is an expansion of (A) tan(A + B)(B) tan 2*A* (C) tan(A - B)(D) tan 2*B* Answer: - Option C **Explanation:** - By Formula $tan(A - B) = \frac{tan A - tan B}{1 + tan A tan B}$ 13. $\frac{\tan A + \tan B}{1 - \tan A \tan B}$ is an expansion of (A) tan(A + B)(B) $\tan 2A$ (C) tan(A - B)(D) $\tan 2B$ Answer: - Option A **Explanation:** - By Formula tan(A + B): Find the value of $\cos(75^{\circ})$ 14. (A) $\frac{1-\sqrt{3}}{2\sqrt{2}}$ (C) $\frac{1+\sqrt{3}}{2\sqrt{2}}$ Answer: - Option B **Explanation:** $-\cos(75^{\circ}) = \cos(45^{\circ} + 30^{\circ})$ Now apply formula $\cos(A + B) = \cos A \cos B - \sin A \sin B$ for finding value of $\cos(75^{\circ})$ If $\tan A = \frac{1}{2}$ and $\tan B = \frac{1}{3}$ then $\tan(A + B)$ is 15. (B) -1 (A) 1(C) 0(D) 2 Answer: - Option A **Explanation:** - Solve by using $tan(A + B) = \frac{tan A + tan B}{1 - tan A tan B}$ $\sin \alpha \cos(\beta - \alpha) + \cos \alpha \sin(\beta - \alpha)$ is equal to 16. (A) $\cos \alpha$ (B) $\cos \beta - \alpha$ (C) $\sin \beta - \alpha$ (D) $\sin \beta$ Answer: - Option D

17. $\frac{\cot A - \cot 2A}{\cot A + \cot 2A} = \frac{\sin A}{\sin 3A} \text{ is}$ $(A) \frac{\sin A}{\sin 3A}$

(B) $\frac{\cos A}{\cos 3A}$

(C) $\frac{\tan A}{\tan 3A}$

(D) None of These

Answer: - Option A

Explanation: - Use $\cot A = \frac{\cos A}{\sin A}$ and $\cot 2A = \frac{\cos 2A}{\sin 2A}$,

Simplify it.

Then use sin(A + B) = sin A cos B + cos A sin Band sin(A - B) = sin A cos B - cos A sin BYou will find above result is true.

If $\tan A = 1$ and $\tan B = 2$ then $\tan C = \dots$, Where A, B, C are the angles of a triangle. 18.

(A) 2

(C)4

Answer: - Option C

Explanation: - Since A, B, C are angles of triangle $: A + B + C = 180^{\circ}$

$$=> A + B = 180^{\circ} - C$$

Operate tangent ratio on both side and use

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \text{ and } \tan(\pi - \theta) = -\tan \theta$$

Find the value of sin(15°) 19.

(A) $\frac{1-\sqrt{3}}{2\sqrt{2}}$

(C) $\frac{1+\sqrt{3}}{2\sqrt{2}}$

Answer: - Option B

Explanation: - Using compound angle formula cos(A + B)

Find the value of cosec(105°)

- 20.
- (A) $\frac{1-\sqrt{3}}{2\sqrt{2}}$

(B) $\frac{2\sqrt{2}}{\sqrt{3}+1}$

Answer: - Option D

Explanation: - Using relation $\csc \theta = \frac{1}{\sin \theta}$ and compound angle formula $\sin(A+B)$

Find the value of tan(15°) 21.

 $(A) \frac{\sqrt{3}-1}{\sqrt{3}+1}$

(B) $\frac{\sqrt{3}+1}{\sqrt{3}-1}$ (D) $\frac{\sqrt{3}-1}{2\sqrt{2}}$

(C) $\frac{1+\sqrt{3}}{2\sqrt{2}}$

Answer: - Option A

Explanation: - Using compound angle formula tan(A - B)

	If A D and Care ar	agles of a triangle, then we can write $\cot^{(B+C)}$ as
22.	<u>.</u>	ingles of a triangle, then we can write $\cot \frac{(B+C)}{2}$ as
	(A) $\tan(\frac{A}{2})$	(B) $\tan(\frac{B+C}{2})$
	(C) $\frac{\tan(B+C)}{2}$	(D) $\tan(\frac{B}{2})$
	Answer: - Option A	
	Ope	A, B, C are angles of triangle $\therefore A + B + C = 180^{\circ} = > B + C = 180^{\circ} - A$ rate cotangent ratio on both side
23.	Let $cos(\alpha + \beta) =$	$\frac{4}{5}$ and let $\sin(\alpha - \beta) = \frac{5}{13}$, where $0 \le \alpha, \beta \le \frac{\pi}{4}$. Then $\tan 2\alpha = ?$
	(A) $\frac{25}{16}$	(B) $\frac{56}{33}$
	(C) $\frac{19}{12}$	$(D)\frac{19}{12}$
	Answer: - Option B	12
	•	trigonometric formulae $sin^2 A = cos^2 A - 1$ and $cos^2 A = sin^2 A - 1$,
	And	compound angle formulae
24.	Find the value of si	$n(-765^0)$
	$(A) - \frac{1}{\sqrt{2}}$	(B) $\frac{1}{\sqrt{2}}$
	(C) $-\frac{1}{2}$	(B) $\frac{1}{\sqrt{2}}$ (D) $\frac{1}{2}$
	Answer: - Option A	
	Explanation: - sin(-	-765^{0}) = $-\sin 765^{0}$ = $-\sin (2 \times 360^{0} + 45^{0})$ Since $\sin (2\pi + \theta) = \sin \theta$
0.5	Find the value of ta	$n(1050^0)$
25.	$(A)^{\frac{1}{2}}$	$(B)\tfrac{1}{\sqrt{3}}$
	(C) $\frac{1}{3}$	$(D) - \frac{1}{\sqrt{3}}$
	Answer: - Option D	V3
	Explanation: - Use a	allied angle concept
		0° + 8) sec (-8) tan 180° - 8) / sec (360° - 8) sin 180° + 8) cot (90° - 8) is
26.	(A) cos8	(B) 1
	(C) sin8	(D) -1
	()	(<i>D</i>) -1
	Answer: - Option D	
	Explanation: -	
27.	The value of sin (18	$0^{\circ} + 8$) cot ($90^{\circ} - 8$) / sec (-8) + sin ² 8 is
	(A) -1	(B) 1
	(C) 1	(D) -2
	Answer: - Option C	
	Explanation: -	

The value of tan 720° - cos 630° - sin 150° cos 120° is 28.

(A) $\frac{1}{4}$

(B) 1/3

(C) $\frac{1}{2}$

(D) 1

Answer: - Option A

Explanation: -

 $\sin(\frac{\pi}{2}-\theta) = \underline{\hspace{1cm}}$

(A) $\sin \theta$

(B) $\cos \theta$

(C) $-\sin\theta$

(D) $-\cos\theta$

Answer: - Option B

Explanation: - Standard Allied angle ratio

 $\cos(\frac{\pi}{2} + \theta) = \underline{\hspace{1cm}}$

(A) $\sin \theta$

(B) $\cos \theta$

(C) $-\sin\theta$

(D) $-\cos\theta$

Answer: - Option C

Explanation: - Standard Allied angle ratio

 $\tan(\pi-\theta)=$

(A) $\tan \theta$

(B) $-\tan\theta$

(C) $\cot \theta$

 $(D) - \cot \theta$

Answer: - Option B

Explanation: - Standard Allied angle ratio

 $\cot(\pi+\theta)=\underline{\hspace{1cm}}$

(A) $\tan \theta$

(B) – $\tan \theta$

(C) $\cot \theta$

 $(D) - \cot \theta$

Answer: - Option C

Explanation: - Standard Allied angle ratio

 $33. \quad \cos(2\pi - \theta) = \underline{\hspace{1cm}}$

(A) $cosec \theta$

(B) $-\sec\theta$

(C) $\cot \theta$

(D) $- \csc \theta$

Answer: - Option D

Explanation: - Standard Allied angle ratio

34.	Find the value of $\cot(\frac{19\pi}{6})$			
J 4.	$(A) \sqrt{3}$	$(B) - \sqrt{3}$		
	(C) 3	(D) -3		
	Answer: - Option A			
	Explanation: - Solved by using allied angle formula	$\cot(3\pi + \theta) = \cot\theta$		
35.	Find the value of $tan(225^0) \cot(405^0) + tan$	Find the value of $tan(225^0) \cot(405^0) + tan(765^0) \cot(765^0)$		
JJ.	(A) 1	(B) 2		
	(C) -2	(D) -1		
	Answer: - Option B			
	Explanation: - Use allied angle formula for tanger	at and cotangent ratio also use $ an heta$. $\cot heta=1$		
36.	If θ be the angle then 2θ , 3θ , 4θ , are called as			
50.	(A) Compound angles	(B) Allied Angle		
	(C) Multiple angle	(D) Sub-multiple angles		
	Answer: - Option C			
	Explanation: - By definition of Multiple angles	Explanation: - By definition of Multiple angles		
37.	If θ be the angle then $\frac{\theta}{2}$, $\frac{\theta}{3}$, $\frac{\theta}{4}$ are called as			
٠,٠	(A) Compound angles	(B) Allied Angle		
	(C) Multiple angle	(D) Sub-multiple angles		
	Answer: - Option D			
	Explanation: - By definition of Multiple angles	T988		
38.	Find $\sin \alpha$ if $\tan(\frac{\alpha}{2}) = \frac{1}{\sqrt{3}}$			
00.	(A) $1 \frac{1}{\sqrt{3}}$	(B) $\frac{\sqrt{3}}{2}$		
	(C) $\sqrt{3}$	(D) 1		
	Answer: - Option B			
	Explanation: - By using Multiple and sub-multiple a	angle formulae $\sin \alpha = \frac{2\tan(\frac{\alpha}{2})}{1+tan^2(\frac{\alpha}{2})}$		
39.	What is cotA + cosecA is equal to			
	(A) $\tan(\frac{A}{2})$	(B) $\cot(\frac{A}{2})$		
	(C) $2\cot(\frac{A}{2})$	(D) $2\tan(\frac{A}{2})$		
	Answer: - Option B			
	Explanation: - Concept cos 2A = cos ² A – 1 and sir	n2A = 2sinA cosA		

If $\sin A = 0.4$ then find value of $\cos 2A$ 40.

(A) 0.50

(B) 0.68

(C) 0.60

(D) 1

Answer: - Option B

Explanation: - Use $\cos 2A = 1 - 2 \sin^2 A$ to solve above example

What is sin C + sin D equal to_____ 41.

(A)
$$2 \sin\left(\frac{C+D}{2}\right) \cdot \cos\left(\frac{C-D}{2}\right)$$

(B)
$$-2 \sin\left(\frac{C+D}{2}\right) \cdot \sin\left(\frac{C-D}{2}\right)$$

(C)
$$2 \cos\left(\frac{C+D}{2}\right) \cdot \sin\left(\frac{C-D}{2}\right)$$

(D)
$$2 \cos\left(\frac{C+D}{2}\right) \cdot \cos\left(\frac{C-D}{2}\right)$$

Answer: - Option A

Explanation: - By definition of Multiple angles

What is sin C - sin D equal to? 42.

(A)
$$2 \sin\left(\frac{C+D}{2}\right) \cdot \cos\left(\frac{C-D}{2}\right)$$

(B)
$$-2 \sin\left(\frac{C+D}{2}\right) \cdot \sin\left(\frac{C-D}{2}\right)$$

(C)
$$2 \cos\left(\frac{C+D}{2}\right) \cdot \sin\left(\frac{C-D}{2}\right)$$

(D)
$$-2 \cos\left(\frac{C+D}{2}\right) \cdot \cos\left(\frac{C-D}{2}\right)$$

Answer: - Option C

Explanation: - By factorization formula $sin C - sin D = 2 cos \left(\frac{C+D}{2}\right) . sin \left(\frac{C-D}{2}\right)$

What is $\cos C - \cos D$ equal to? 43.

(A)
$$2 \sin\left(\frac{c+D}{2}\right) \cdot \cos\left(\frac{c-D}{2}\right)$$
 (B) $-2 \sin\left(\frac{c+D}{2}\right) \cdot \sin\left(\frac{c-D}{2}\right)$ (C) $2 \cos\left(\frac{c+D}{2}\right) \cdot \sin\left(\frac{c-D}{2}\right)$ (D) $-2 \cos\left(\frac{c+D}{2}\right) \cdot \cos\left(\frac{c-D}{2}\right)$

(B)
$$-2 \sin\left(\frac{C+D}{2}\right) \cdot \sin\left(\frac{C-D}{2}\right)$$

(C)
$$2 \cos\left(\frac{C+D}{2}\right) \cdot \sin\left(\frac{C-D}{2}\right)$$

(D)
$$-2 \cos\left(\frac{C+D}{2}\right) \cdot \cos\left(\frac{C-D}{2}\right)$$

Answer: - Option B

Explanation: - By factorization formula $\cos C - \cos D = -2 \sin \left(\frac{C-D}{2} \right) \cdot \sin \left(\frac{C-D}{2} \right)$

What is cos C + cos D equal to? 44.

(A)
$$2 \sin\left(\frac{C+D}{2}\right) \cdot \cos\left(\frac{C-D}{2}\right)$$
 (B) $-2 \sin\left(\frac{C+D}{2}\right) \cdot \sin\left(\frac{C-D}{2}\right)$ (C) $-2 \sin\left(\frac{C+D}{2}\right) \cdot \sin\left(\frac{C-D}{2}\right)$ (D) $2 \cos\left(\frac{C+D}{2}\right) \cdot \cos\left(\frac{C-D}{2}\right)$

(B)
$$-2 \sin\left(\frac{C+D}{2}\right) \cdot \sin\left(\frac{C-D}{2}\right)$$

(C)
$$-2 \sin\left(\frac{C+D}{2}\right) \cdot \sin\left(\frac{C-D}{2}\right)$$

(D)
$$2 cos\left(\frac{C+D}{2}\right) . cos\left(\frac{C-D}{2}\right)$$

Answer: - Option D

Explanation: - By factorization formula $\cos C + \cos D = 2 \cos \left(\frac{C+D}{2}\right) \cdot \cos \left(\frac{C-D}{2}\right)$

2sin A. cos B can be expressed as 45.

$$(A) \sin(A+B) + \sin(A-B)$$

(B)
$$sin(A + B) - sin(A - B)$$

(C)
$$cos(A + B) + cos(A - B)$$

(D)
$$cos(A + B) - cos(A - B)$$

Answer: - Option A

Explanation: - By defactorisation formula $2\sin A \cdot \cos B = \sin(A+B) + \sin(A-B)$

2cos A. cos B can be expressed as 46.

$$(A) sin(A + B) + sin(A - B)$$

(B)
$$sin(A + B) - sin(A - B)$$

(C)
$$cos(A + B) + cos(A - B)$$

(D)
$$cos(A + B) - cos(A - B)$$

Answer: - Option C

Explanation: - By defactorisation formula $2 \cos A \cos B = \cos(A + B) + \cos(A - B)$

 $2 \sin 15^{0} \cos 5^{0}$ can be expressed as 47.

(A)
$$2 \sin 25^{\circ} \cos 5^{\circ}$$

(B)
$$\sin 20^{\circ} \cos 5^{\circ}$$

(C)
$$\sin 20^{0} \sin 10^{0}$$

(D)
$$\sin 15^{0} \sin 25^{0}$$

Answer: - Option C

Explanation: - By defactorisation formula $2\sin A \cdot \cos B = \sin(A+B) + \sin(A-B)$

Express $\cos \frac{\pi}{4} + \cos \frac{\pi}{6}$ into the product form 48.

$$(A) \cos \frac{5\pi}{24} + \cos \frac{\pi}{24}$$

(B)
$$2\cos\frac{5\pi}{24} + \cos\frac{\pi}{24}$$

(C)
$$\sin \frac{5\pi}{24} + \sin \frac{\pi}{24}$$

(D)
$$2\sin\frac{5\pi}{24} + \sin\frac{\pi}{24}s\frac{\pi}{6}$$

Answer: - Option B

Explanation: - By factorization formula $\cos C + \cos D = 2 \cos \left(\frac{C+D}{2}\right) \cdot \cos \left(\frac{C-D}{2}\right)$

If $2 \sin 40 \cos 10 = \sin A + \sin B$ find A & B 49.

(A)
$$A = 30$$
, $B = 50$

(B)
$$A = 10$$
, $B = 40$

(C)
$$A = 40$$
, $B = 10$

(D)
$$A = 50$$
, $B = 30$

Answer: - Option B

Explanation: - By defactorisation formula $2\sin A \cdot \cos B = \sin(A+B) + \sin(A-B)$

Value for complementary relation $sin^{-1}x + cos^{-1}x = \dots$ is 50.

(A))
$$\frac{\pi}{4}$$

(B)
$$\frac{\pi}{2}$$
 (D) -1

(C)1

Answer: - Option B

Explanation: - By complementary relation $sin^{-1}x + cos^{-1}x = \frac{\pi}{2}$

 $cos^{-1}(-x)$ is equal to? 51.

(A)
$$cos^{-1}x$$

(B)
$$\pi - cos^{-1}x$$

$$(C) - cos^{-1}x$$

(D)
$$\pi + cos^{-1}x$$

Answer: - Option B

Explanation: - By negative relation $cos^{-1}(-x) = \pi - cos^{-1}x$.

52. Evaluate $tan^{-1}\left(\frac{1}{7}\right) + tan^{-1}\left(\frac{1}{13}\right) = \dots$

(A) $tan^{-1}\left(\frac{2}{9}\right)$

(B) $\cot^{-1}\left(\frac{2}{9}\right)$

(C) $tan^{-1}\left(\frac{9}{2}\right)$

(D) $tan^{-1}(1)$

Answer: - Option B

Explanation: - By using $tan^{-1}(x) + tan^{-1}(y) = tan^{-1}\left(\frac{x+y}{1-x\cdot y}\right)$

53. Find the principal value of $\cos\left(\frac{\pi}{2} - \sin^{-1}\frac{1}{2}\right)$

 $(A)^{\frac{1}{2}}$

(B) 1

(C) 0

(D) $\frac{-1}{2}$

Answer: - Option A

Explanation: - Use $\cos(\frac{\pi}{2} - \theta) = \sin\theta$ and $\sin\sin-1x = x$

Find the principal value of $tan^{-1} \infty - sin^{-1} \frac{1}{\sqrt{2}}$

(A) $\frac{\pi}{4}$

(B) $\frac{2\pi}{3}$

(C) π

(D) $\frac{5\pi}{6}$

Answer: - Option A

Explanation: - By using $sin^{-1}(\sin x) = x$ and $tan^{-1}(\tan x) = x$

Evaluate $cos^{-1}\left(\frac{3}{5}\right) + sin^{-1}\left(\frac{3}{5}\right)$

(A) $\frac{\pi}{3}$

55.

(B) $\frac{\pi}{2}$

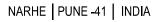
(C) π

 $(D)\frac{5\pi}{6}$

Answer: - Option B

Explanation: - We know $sin^{-1}x + cos^{-1}x = \frac{\pi}{2}$

ZEAL POLYTECHNIC


Prepared By Mr. Jadhav G. R.

Verified By Mr. Jadhav G. R. Module Coordinator **Re-Verified By** Mr. Dhavan P. P. Academic Coordinator Approved By Mr. Pathak S. R. First Year Coordinator

ZEAL EDUCATION SOCIETY'S

ZEAL POLYTECHNIC, PUNE

Question Bank for Multiple Choice Questions

Program: All Programs in Diploma Engineering	Program Code: - CE/CO/ME/EE/EJ
Scheme: - I	Semester: - 1
Course: - Basic Mathematics	Course Code: - 22103

03 – Straight Line	Marks:-12	
Content of Chapter:-	*	
3.1 Straight line and slope of straight line.	Treat will	
a. Angle between two lines		
b.Condition of parallel and perpendicular lines .		
3.2 Various forms of straight lines.		
a. Slope point form,two point form		
b.Two points intercept form.		
c.General form.		
3.2 Perpendicular distance from a point on the line.		
3.3 Perpendicular distance between two parallel line		

1.	If the inclination of the line is 45°, then its slope is		
1.	(A) 1		(B) 0
	(C) -1		(D) -2
	Answer: - Option A	A GENTLE	1300
	Explanation:- Slop	be = $Tan(\theta)$	
2.	The slope of y-axis is		
	(A) 1	ZEAL POLY	(B) 0
	(C) 1		(D) Not Defined
	Answer: - Option [)	
	Explanation:- The	angle made by Y-axis with the	positive direction of X-axis is 90° .
3.	The slope of x-axi	s is	
	(A) 1		(B) 0
	(C) -1		(D) Not Defined

1	The slope of the line $5x+3y+7=0$ is .

(A)
$$\frac{5}{3}$$

(B)
$$\frac{3}{5}$$

(C)
$$-\frac{5}{3}$$

(D)
$$-\frac{3}{5}$$

Answer: - Option C

Explanation: - Slope of line ax+by+c=0 is , $m=-\frac{a}{b}$

Two lines are parallel to each other is their slopes are ... 5.

(A) equal

(B) not equal

(C) opposite

(D) imaginary

Answer: - Option A

Explanation:- parallel lines slopes are equals.

The slope of line passing through origin and and the point (3, 4) is ... 6.

(A)
$$\frac{4}{3}$$

(B)
$$-\frac{4}{3}$$

(C)
$$\frac{3}{4}$$

(D)
$$-\frac{3}{4}$$

Answer: - Option A

Explanation: - By using formula , $m = \frac{y_2 - y_1}{x_2 - x_1}$

The y-intercept of line 5x-4y+7=0 is . 7.

(A)
$$\frac{5}{4}$$

(B)
$$-\frac{5}{4}$$

(C)
$$\frac{7}{4}$$

(D)
$$-\frac{7}{4}$$

Answer: - Option c

Explanation: - By using formula $m = -\frac{c}{B}$

If the slope of line passing through the points (-1, -4) and (2, k) is -1 then k=... 8.

(A) 7

(C) -7

(B) 0 (D) -2

Answer: - Option C

Explanation: - By using formula $m = \frac{y_2 - y_1}{x_2 - x_1}$

The lines 2x-y+1=0 and 8x-4y-5=0 are ... 9.

(A) perpendicular

(B) parallel

(C) intersecting

(D) none of these

Answer: - Option B

Explanation: - check m_1 . $m_2 = -1$ or $m_1 = m_2$

The equation of line passing through the point (4, 1) and making an angle of 45° with positive 10. direction of x-axis is ... (A) x-y-3=0(B) x+y-3=0(C) x-y+3=0(D) x+y+3=0**Answer: -** Option A **Explanation:-** Slope intercept form of line is $y - y_1 = m(x - x_1)$ The line 2x+3y-1=0 and 3x-2y-5=0 are 11. (A) perpendicular (B) parallel (C) intersecting (D) none of these Answer: - Option A **Explanation:** - check $m_1.m_2=-1$ or $m_1=m_2$ The equation of line having slope 3 and making intercept 4 on y-axis is ... 12. (A) 3x+y-3=0(B) 3x-y+4=0(D) 2x-y+3=0 (C) 2x+y-3=0**Answer: -** Option B **Explanation:-** Slope intercept form of line is y=mx+c The equation of line whose slope is $\frac{-3}{2}$ and passing through the point (1, 2) is ... 13. (B) 3x-2y+7=0(A) 3x+2y-7=0(D) 3x-2y-5=0(C) 3x-2y-7=0Answer: - Option A **Explanation:** - The equation of line in slope intercept form is $y - y_1 = m(x - x_1)$ The equation of line passing through the points (3, 4) and (5, 6) is 14. (A) x+y-1=0(C) x-y-1=0Answer: - Option B **Explanation:** - The equation line in two point form is $\frac{y-y_1}{y_1-y_2} = \frac{x-x_1}{x_1-x_2}$ The equation of line whose x-intercept is 10 and y-intercept is 3 is given by 15. (A) 3x+10y-30=0(B) 3x-10y-30=0

(C) 3x-10y+30=0

(D) 3x+10y+30=0

Answer: - Option A

Explanation: - The equation line in two intercept form is $\frac{x}{a} + \frac{y}{b} = 1$

16.	The acute angle between the line y=5x+6 and y=x is		
	(A) $\tan^{-1}\left(\frac{2}{3}\right)$	(B) $\tan^{-1}\left(\frac{3}{2}\right)$	
	(C) $tan^{-1}(1)$	(D) $tan^{-1}(-1)$	

Answer: - Option A

Explanation: - If is the acute angle between lines then $tan\theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$

The distance of point (1, -1) from the straight line 3x-4y+8=0 is 17.

Answer: - Option A

Explanation: - The distance of a point $P(x_1, y_1)$ from the line ax+by+c=0 is $\left|\frac{ax_1+by_1+c}{\sqrt{a^2+b^2}}\right|$

The distance between the two parallel lines 6x+8y+10=0 and 6x+8y-25=0 is 18.

(A)
$$\frac{5}{2}$$
 (B) $\frac{7}{2}$ (C) $\frac{3}{2}$

Answer: - Option B

Explanation: - Perpendicular distance between two parallel lines $ax + by + c_1 = 0$ and $ax + by + c_2 = 0$ is $\left|\frac{c_1 - c_2}{\sqrt{a^2 + b^2}}\right|$

Two lines are perpendicular to each other if product of their slope is equal to 19.

Answer: - Option C

Explanation: - If two lines are perpendicular then $\, m_1 . \, m_2 = -1 \,$

If inclination of the line is ' θ ', then its slope is given by ...

(A)
$$\sin\theta$$
 (B) $\cos\theta$

(C)
$$tan\theta$$
 (D) $cot\theta$

Answer: - Option C

Explanation: - Slope = $Tan(\theta)$

21.	Slope of general line ax+by+c=0 is given by	
	$(A)\frac{a}{b}$	$(B)-\frac{a}{b}$
	$(C)\frac{b}{a}$	$(D) - \frac{b}{a}$
	Answer:Option B	a a
	Explanation: - $slope = -\frac{Coefficient\ of\ x}{coefficient\ of\ y}$	
22.	The slope of line whose inclination is 0° is	
	(A) 0	(B) 1
	(C) -1	(D) none of these
	Answer: - Option A	(D) Holle of these
	Explanation: - Slope = $Tan(\theta)$	
23.	The equation of 'x-axis' is	
	(A) x=0	(B) x=1
	(C) y=0	(D) y=1
	Answer: - Option C	
24	Explanation: - The y- coordinates on x-axis are zero.	O.
24.	The equation of 'y-axis' is (A) x=0	(B) x=1
	(C) y=0	(D) y=1
	Answer: - Option A	
25.	Explanation: - The X- coordinates on Y-axis are ze	
20.	The point of intersection of the lines 4x+3y=8 and x+y=1 is	
	(A) (5, 4)	(B) (4, 5)
	(C) (-5, 4) Answer: - Option D	(D) (5, -4)
	Explanation: - Solve these simultaneous equations	1598
26.		
		other. If slope of line L_1 is $\frac{4}{5}$, then slope of line L_2 is
	(A) $\frac{5}{4}$	(B) $\frac{-5}{4}$
	(C) $\frac{4}{5}$	(D) none of these
	Answer: - Option B	
	Explanation: - If two lines are perpendicular then	$m_1. m_2 = -1$
27.	Let lines 'L ₁ ' and 'L ₂ ' are parallel to each other. I	
	(A) 0	(B) 1
	(C) -1	(D) not defined
	Answer: - Option B	
	Explanation: - If the lines are parallel then slopes a	are equal.
28.	Equation of the line passing through point (-3	·

(A) 0

(B) 1

(C) -1

(D) none of these

Answer: - Option C

Explanation: - The equation of line in slope intercept form is $y - y_1 = m(x - x_1)$

29. The area of the triangle whose vertices are (3,1), (-1,3) and (-3,-2)

(A) 12 sq. Unit

(B) 28 sq. Unit

(C) 11 sq. Unit

(D) 21.5 sq. Unit

Answer: - Option A

Explanation: - we can find the area of the triangle by using formula $\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix}$

30. Which of the following points are collinear

(A) (2,3),(-1,0) and (4,5)

(B) (3,1),(-1,3) and (-3,4)

(C) (3,5),(3,-2) and (-3,16)

(D) None of the above

Answer: - Option A

Explanation: - The condition of collinearity is $\begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}$

The value of x if the points (-5,7), (x,5) and (2,-7) are collinear

(A) x=0

(B) x=-3

(C) x=-1

Answer: - Option B

Explanation: - The condition of collinearity is $\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix} = 0$

The length of the perpendicular from the point (1,6) on the line x+y+8=0

 $(A) \frac{15}{\sqrt{2}}$

(B) $\frac{15}{\sqrt{3}}$ (D) $\frac{15}{\sqrt{6}}$

(C) $\frac{15}{\sqrt{4}}$

Answer: - Option A

Explanation: - The distance of a point $P(x_1,y_1)$ from the line ax+by+c=0 is $\left|\frac{ax_1+by_1+c}{\sqrt{a^2+b^2}}\right|$

Prepared By Mr. Jadhav G. R.

Verified By Mr. Jadhav G. R. Module Coordinator

Re-Verified By Mr. Dhavan P. P. Academic Coordinator

Approved By Mr. Pathak S. R. First Year Coordinator

ZPOLY

ZEAL EDUCATION SOCIETY'S

ZEAL POLYTECHNIC, PUNE

NARHE | PUNE -41 | INDIA

04 -	- Mensuration	Marks:- 08
4.1	tent of Chapter:- Area of regular closed figures, Area of triangle Volume of cuboids, cone, cylinder and sphere	e, square, parallelogram, rhombus, trapezium and circle.
1.	Area of the triangle when base is b and height is h is	
	(A) Area = $\frac{1}{2} \times b \times h$	(B) Area = $b \times h$
	(C) Area = b^2	(D) Area = h^2
	Answer: - Option A	ATION
	Explanation: - According to Formula: Area	$=\frac{1}{2} \times \text{base} \times \text{height}.$
2.	Area of an equilateral triangle is	2 16 kg
	(A) Area = $b \times h$	(B) Area = $\frac{\sqrt{3}}{4} \times (\text{side})^4$
	(C) Area = $(side)^2$	(D) Area = $\frac{\sqrt{3}}{4} \times (\text{side})^2$
	Answer: - Option D	■ /. //×/
	Explanation: - According to Formula: Area	$a = \frac{\sqrt{3}}{4} \times (\text{side})^2$
3.	Area of rectangle is	X X
	(A) Area = base \times height	(B) Area = length \times breadth
	(C) Area = base \times length	(D) Area = length \times heigth
	Answer: - Option B	
Explanation: - According to Formula: Area of rectangle = length		of rectangle = length \times breadth
4.	Area of square is	
	(A) Area = $side^4$	(B) Area = side \times side
	(C) Area = $side^3$	(D) Area = $side^5$

Explanation: - According to Formula: Area = length \times breadth

Answer: - Option B

5.	Area of rhombus is	
----	--------------------	--

(A) Area =
$$\frac{1}{2} \times b \times h$$

(B) Area =
$$side \times side$$

(C) Area =
$$\frac{1}{2} \times d_1 \times d_2$$

(D) Area =
$$b \times h$$

Answer: - Option C

Explanation: - According to Formula: Area = $\frac{1}{2}$ × Product of diagonals, where d₁ & d₂ are diagonals.

6. Area of parallelogram when base is 'b' and height is 'h' is_

(A) Area =
$$b \times h$$

(B) Area =
$$\frac{1}{2} \times b \times h$$

(C) Area =
$$\frac{\sqrt{3}}{4} \times (\text{side})^2$$

(D) Area =
$$(side)^2$$

Answer: - Option A

Explanation: - According to Formula: Area = base \times height

7. If 'r' is the radius of circle, then area of circle is

(A) Area =
$$2\pi r$$

(B) Area =
$$\frac{d}{2}$$
, where 'd' is the diameter

(C) Area
$$= 2r$$

(D) Area =
$$\pi r^2$$

Answer: - Option D

Explanation: - According to Formula: Area = $\pi \times (radius)^2$

8. Area of Trapezium is____

(A) Area =
$$\frac{1}{2}$$
 × (sum of parallel sides) × height (B) Area = sum of parallel sides) × height

(B) Area = sum of parallel sides)
$$\times$$
 heigh

(C) Area =
$$\frac{1}{2}$$
 × (sum of parallel sides)

(C) Area =
$$\frac{1}{2}$$
 × (sum of parallel sides) (D) Area = $\frac{1}{2}$ × (sum of parallel sides) + height

Answer: - Option A

Explanation: - According to Formula: Area = $\frac{1}{2}$ × (sum of parallel sides) × height

9. If 'R' and 'r' be radius of outer and inner circles, then area of annulus (ring) is_

(A) Area =
$$\pi r^2 - \pi R^2$$

(A) Area =
$$\pi r^2 - \pi R^2$$
 (B) Area = $\pi R^2 - \pi r^2$ (C) Area = $\pi r^2 = \pi R^2$ (D) Area = $\pi r^2 + \pi R^2$

(C) Area =
$$\pi r^2 = \pi R^2$$

(D) Area =
$$\pi r^2 + \pi R^2$$

Answer: - Option B

Explanation: - According to Formula: Area = Area of outer circle — Area of inner circle

The area of rectangle with one side 8 cm is 172 cm². Find length of the other side

(A) 26 cm

(B) 30 cm

(C) 21.5 cm

(D) 72 cm

Answer: - Option C

Explanation: - According to Formula: Area = length \times breadth

	The area of monibus whose diagonals are of le	igui rocin and 0.2 cm.
	(A) 26 sq.cm	(B) 41 sq. cm
	(C) 210 sq. cm	(D) 82 sq.cm
	Answer: - Option B	
	Explanation: - According to Formula: Area = $\frac{1}{2}$ ×	$d_1 \times d_2$
12.	The area of the circle whose radius is 7.7 cm.	
	(A) 126.5 cm ²	(B) 130.4 cm ²
	(C) 121.5 cm ²	(D) 186.34 cm ²
	Answer: - Option D	
	Explanation: - According to Formula: Area = πr^2	· ·
13.	If the area of circle is 120 cm^2 , then radius of a	circle is
	(A) r = 6.18 cm	(B) r = 8.18 cm
	(C) r = 9.18 cm	(D) r = 4.18 cm
	Answer: - Option A	
	Explanation: - According to Formula: Area = πr^2	
14.	A circle has a diameter of 14cm. Then its area is	
	(A) 164 sq.cm	(B) 174 sq.cm
	(C) 154 sq.cm	(D) 184 sq.cm
	Answer: - Option D	
	Explanation: - According to Formula: Area = πr^2	1808
15.	The area of a trapezium whose parallel sides ar between the sides is 4cm is	e 10 cm and 8cm where the perpendicular distance
	(A) A = 64 sq.cm (C) A = 54 sq.cm	(B) $A = 74 \text{ sq.cm}$
	(C) A = 54 sq.cm	(D) A = 36 sq.cm
	Answer: - Option D	
	Explanation: - According to Formula: Area = $\frac{1}{2}$ ×	(sum of parallel sides) \times height
16.	A wall is of the form of a trapezium with height cost of painting the wall if it has rate of painting	4 m and parallel sides being 3m and 5m then the as Rs. 25 per sq. m
	(A) 220 Rs	(B) 280 Rs
	(C) 240 Rs	(D) 260 Rs.
	Answer: - Option C	
	Explanation: - According to Formula: Area = $\frac{1}{2}$ ×	(sum of parallel sides) \times height

17. The area of a trapezoid with base of 10cms and 14cms and height of 5cms		14cms and height of 5cms.	
	(A) 60 sq.cm	(B) 70 sq.cm	
	(C) 50 sq.cm	(D) 30 sq.cm	
	Answer: - Option A		
	Explanation: - According to Formula: Area = $\frac{1}{2}$ ×	(sum of parallel sides) \times height	
18.	The area of trapezoid is 24 sq.cm and the bases are 9cms and 7cms then the height is		
	(A) h = 4cm	(B) h = 3cm	
	(C) h = 5cm	(D) h = 6cm	
	Answer: - Option B		
	Explanation: - According to Formula: Area = $\frac{1}{2}$ ×	(sum of parallel sides) \times height	
19.	The area of a rectangular garden is $3000m^2$ Its the garden is	sides are in the ratio 6:5. Then the perimeter of	
	(A) 220 m	(B) 240 m	
	(C) 260 m	(D) 280 m	
	Answer: - Option A		
	Explanation: - According to Formula: Area = length \times breadth		
20.	The circumference of circle whose area is 38.5 $ m cm^2$.		
	(A) 22 cm	(B) 24 cm	
	(C) 26 cm	(D) 28cm	
	Answer: - Option A	1000	
	Explanation: - According to Formula: Area = πr^2	2 , Circumference = 2 πr	
21.	Find the area of triangular plot whose base is 17.2 cm and height 19.60 cm.		
	(A) 126.5 cm ²	(B) 130.4 cm ²	
	(C) 168.56 cm ²	(D) 186.34 cm ²	
	Answer: - Option C		
	Explanation: - According to Formula: Area = base \times height.		
22.	The of a right-angled triangle is 8m and hypotenuse is 100m. Find its area.		
	(A) 48 m^2	(B) 24 m ²	
	(C) 21 m ²	(D) 34 m ²	
	Answer: - Option B		
	Explanation: - According to Formula: Area = base \times height		

23.	A park is in the form of a right-angled triangle with hypotenuse 13m. If one of the side is 12 m, find the cost of leveling at the rate of Rs. 10 per sq. m.		
	(A) Rs. 30	(B) Rs.60	
	(C) Rs. 250	(D) Rs. 300	
	Answer: - Option D		
	Explanation: - According to Formula: Area = b	ase × height	
24.	Find the area of triangle whose sides are 4cm	, 6cm and 8cm.	
	(A) 135 cm ²	(B) 130.4 cm^2	
	(C) 11.5 cm ²	(D) 11.62 cm ²	
	Answer: - Option D		
	Explanation: - Using Heron's to Formula: Area	$= \sqrt{s(s-a)(s-b)(s-c)}$	
25.	Find the area of triangle if a = 51 cm, b = 70cm	and $\angle C = 41^{\circ}$.	
	(A) 1117.51 cm ²	(B) 1304.4 cm ²	
	(C) 1171.07 cm ²	(D) 1816.34 cm ²	
	Answer: - Option C		
	Explanation: - According to Formula: Area = $\frac{1}{2} \times a.b \times sin C$		
26.	The area of an Equilateral triangle is $\sqrt{3}$ cm². Find its height.		
	(A) 18 cm	(B) $9\sqrt{3}$ cm	
	(C) $3\sqrt{3}$ cm	(D) $\sqrt{3}$ cm	
	Answer: - Option B	-1300	
27.	Explanation: - According to Formula: Altitude of equilateral triangle $=\frac{\sqrt{3}}{2} \times \text{side}$ 7. The adjacent sides of a parallelogram are 10 cm and 8 cm, one of the diagonal is 6cm. Find area of the parallelogram.		
	(A) 12 cm ²	(B) 24 cm ²	
	(C) 21 cm ²	(D) 48 cm^2	
	Answer: - Option D		
	Explanation: - According to Formula: Area = $\sqrt{s(s-a)(s-b)(s-c)}$		
28.	inside. Find the area of the path.	has gravel path 10 meters wide all around it on the	
	(A) 3600 m ²	(B) 1304 m^2	
	(C) 1215 m ² Answer: - Option A	(D) 1864 m ²	
	Answer: - Option A	actionals — longth V huse left	
	Explanation: - According to Formula: Area of rectangle = length \times breadth		

29.	The side of square shaped field is 1.20 per m ² .	s 170m long. Find the cost of leveling the field at the rate of Rs.
	(A) Rs. 28900	(B) Rs. 4680
	(C) Rs. 34680	(D) Rs. 18634
	Answer: - Option C	
	Explanation: - According to Formula	a: Area = $(side)^2$
30.	<u> </u>	f land, one of whose side is 25 meters, a man want to buy a e and of the same area as the square plot. Determine the length
	(A) $L = 12$ meters	(B) $L = 12.5$ meters
	(C) $L = 27$ meters	(D) $L = 11.5$ meters
	Answer: - Option B	
	Explanation: - According to Formula	a: Area of rectangle = length \times breadth. Area of square = $(\text{side})^2$
31.	Find the area of rhombus whose of	liagonals are 6cm and 9cm.
	(A) $A = 54 \text{ cm}^2$	(B) $A = 45 \text{ cm}^2$
	(C) $A = 27 \text{ cm}^2$	(D) $A = 15 \text{ cm}^2$
	Answer: - Option C	
	Explanation: - According to Formula	a: Area = $\frac{1}{2} \times d_1 \times d_2$
32. Area of rhombus is 336cm² and one diagonal is 14cm. Find the length of side.		ne diagonal is 14cm. Find the length of side.
	(A) side $= 25$ cm	(B) side $= 48$ cm
	(C) side = 52cm	(D) side = 62 cm
	Answer: - Option A	
	Explanation: - According to Formula	a: Side of rhombus $=\frac{1}{2}\sqrt{{d_1}^2+{d_2}^2}$
33.	Find the area of rhombus if its sid	e is 13cm and one of its diagonal is 10cm.
	(A) Area = 12 cm^2 (C) Area = 270 cm^2 Answer: - Option D	(B) Area = 240 cm^2 (D) Area = 120 cm^2
	Explanation: - According to Formula	a: Area = $\frac{1}{2} \times d_1 \times d_2$ and Side of rhombus = $\frac{1}{2} \sqrt{{d_1}^2 + {d_2}^2}$
34.		zium measures 50m and 20m respectively and altitude is 50m.
	(A) Area = 70 m^2	(B) Area = 1240 m^2
	(C) Area = 1750 m^2	(D) Area = 1120 m^2

Answer: - Option D

	il sulli di two paraller sides di a trapeziulii is 232	com and its area is 320 cm-, i mu its annuae,
	(A) $h = 12 \text{ cm}$	(B) $h = 8 \text{ cm}$
	(C) $h = 2 cm$	(D) $h = 16 \text{ cm}$
	Answer: - Option B	
	Explanation: - According to Formula: Area = $\frac{1}{2}$ ×	(sum of parallel sides) \times height
36.	The two parallel sides of a trapezium measure are equal each being 17m. Find its area.	s 58m and 42m respectively. The other two Sides
	(A) Area = 750 m^2	(B) Area = 240 m^2
	(C) Area = 270 m^2	(D) Area = 120 m^2
	Answer: - Option A	
	Explanation: - According to Formula: Area = $\frac{1}{2}$ × theorem.	(sum of parallel sides) \times height and Pythagoras
37.	Volume of Cuboid is	
	(A) Volume = $l \times b \times h$ cubic units.	(B) Volume = $l \times b$ cubic units.
	(C) Volume = $l \times h$ cubic units.	(D) Volume = $b \times h$ cubic units.
	Answer: - Option A	
	Explanation: - According to Formula: Volume $= l$	\times $b \times h$ cubic units.
38.	Let 'l', 'b' and 'h' are the length, breadth and hei	ght respectively, then total surface area is
	(A) Surface Area = $2 (lb + bh)$	(B) Surface Area = $2 (lh + bh)$
	(C) Surface Area = $2 (lb + lh)$	(D) Surface Area = $2 (lb + bh + lh)$
	Answer: - Option D	139R
	Explanation: - According to Formula: Surface Area	of cuboid = $2 (lb + bh + lh)$
39.	Let 'l', 'b' and 'h' are the length, breadth and hei	ght respectively, then the diagonal of cuboid is
	(A) Diagonal = $\sqrt{l^2 + b^2}$	(B) Diagonal = $l^2 + b^2 + h^2$
	(C) Diagonal = $\sqrt{l^2 + b^2 + h^2}$	(D) Diagonal = $\sqrt{l+b+h}$
	Answer: - Option C	
40.	Explanation: - According to Formula: Diagonal of o	$cuboid = \sqrt{l^2 + b^2 + h^2}$
40.	Volume of cube is	
	(A) Volume = $(side)^3$.	(B) Volume = $(side)^2$.
	(C) Volume = side	(D) Volume = length \times breadth
	Answer: - Option A	
	Explanation: - According to Formula: Volume = (side) ³

41.	Surface area of cube is	
	(A) Surface Area = $(side)^2$	(B) Surface Area = 2 (side)^2
	(C) Surface Area = 6 (side)^2	(D) Surface Area = 6 (side)
	Answer: - Option C	
	Explanation: - According to Formula: Surface Area	$a ext{ of cube} = 6 ext{ (side)}^2$
42.	Diagonal of cube is	
	(A) Diagonal of cube = $\sqrt{3}$ (side) ²	(B) Diagonal of cube = $\sqrt{3}$ (side)
	(C) Diagonal of cube = $\sqrt{3}$ (side) ³	(D) Diagonal of cube = $\sqrt{6}$ (side) ²
	Answer: - Option B	
	Explanation: - According to Formula: Diagonal of o	cube = $\sqrt{3}$ (side)
43.	If 'r' is the radius of cylinder and 'h' is the heigh	t of cylinder, then volume is
	(A) Volume = $\pi r^2 h$	(B) Volume = $2\pi rh$
	(C) Volume $= \pi r^2$	(D) Volume $= r^2h$
	Answer: - Option A	
	Explanation: - According to Formula: Volume of cy	$dinder = \pi r^2 h$
44.	If 'r' is the radius of cylinder and 'h' is the heigh	t of cylinder, then curved surface area is
	(A) Curved Surface Area $=\pi r^2 h$	(B) Curved Surface Area $= 2\pi rh$
	(C) Curved Surface Area $= \pi r^2$	(D) Curved Surface Area $= r^2h$
	Answer: - Option B	
	Explanation: - According to Formula: Curved Surfa	ace Area of cylinder $=2\pi rh$
45.	If 'r' is the radius of cylinder and 'h' is the heigh	t of cylinder, then total surface area is
	(A) Total Surface Area = $2\pi r(r + h)$	(B) Total Surface Area $= \pi r h$
	(C) Total Surface Area = $2\pi(r + h)$	(C) Total Surface Area = $2r(r + h)$
	Answer: - Option A	
46.	Explanation: - According to Formula: Total Surface If 'r', 'h' and 'l' is the radius, height and slar volume is	e Area of cylinder $=2\pi r(r+h)$ at height of right circular cone respectively, then
	(A) Volume = $\pi r^2 h$	(B) Volume = $2\pi rhl$
	(C) Volume $=\frac{1}{3}\pi r^2 h$	(D) Volume = r^2hI
	Answer: - Option C	
	Explanation: - According to Formula: Volume of co	one = $\frac{1}{3}\pi r^2 h$

47.	If 'r', 'h' and 'l' is the radius, height an curved surface area is	d slant height of right circular cone respectively, then
	(A) Curved Surface Area = $\pi r^2 l$	(B) Curved Surface Area = $2\pi rl$
	(C) Curved Surface Area = πr^2	(D) Curved Surface Area = πrl
	Answer: - Option D	
	Explanation: - According to Formula: Curve	d Surface Area of cone $=\pi rl$
48.	If 'r', 'h' and 'l' is the radius, height and sl surface area is	ant height of right circular cone respectively, then Total
	(A) Total Surface Area = $\pi r(r + h)$	(B) Total Surface Area = $\pi r l$
	(C) Total Surface Area = $2\pi(r + l)$	(D) Total Surface Area = $\pi r(r + l)$
	Answer: - Option D	
	Explanation: - According to Formula: Total S	Surface Area of cone = $\pi r(r + l)$
49.	If 'r', 'h' and 'l' is the radius, height and sl height $l=$	ant height of right circular cone respectively, then slant
	(A) Slant Height (I) = $\sqrt{h^2 + l^2}$	(B) Slant Height (I) = $\sqrt{h^2 + r^2}$
	(C) Slant Height (I) = $\sqrt{h^2 - l^2}$	(D) Slant Height (I) = $\sqrt{h^2 - r^2}$
	Answer: - Option B	
	Explanation: - According to Formula: Slant	Height (I) = $\sqrt{h^2 + r^2}$
50.	Volume of Sphere is	TNE
	(A) Volume $= \frac{4}{3}\pi r^3$	(B) Volume = $2\pi r$
	(C) Volume $=\frac{4}{3}\pi r^2$	(D) Volume = πr^2
	Answer: - Option A	1-1396
	Explanation: - According to Formula: Volum	be of sphere $=\frac{4}{3}\pi r^3$
51.	Surface Area of Sphere is	
	(A) Surface Area = πr^2	(B) Surface Area = $2\pi r$
	(C) Surface Area = $4 \pi r^2$	(D) Surface Area = $\frac{4}{3}\pi r^2$
	Answer: - Option C	5
	Explanation: - According to Formula: Surface	be Area of Sphere = $4 \pi r^2$
52.	Volume of Hemisphere is	
	(A) Volume = $\frac{4}{3}\pi r^3$	(B) Volume = $2\pi r$
	(C) Volume = $\frac{4}{3}\pi r^2$	(D) Volume = $\frac{2}{3}\pi r^3$
	Answer: - Option D	•
	Explanation: - According to Formula: Volum	the of Hemisphere = $\frac{2}{3}\pi r^3$

53.	Curved Surface Area of Hemisphere is	
	(A) Curved Surface Area = πr^2	(B) Curved Surface Area = πr^2
	(C) Curved Surface Area = $2 \pi r^2$	(D) Curved Surface Area = $4 \pi r^2$
	Answer: - Option B	
	Explanation: - According to Formula: Curved	d Surface Area of Sphere = $2 \pi r^2$

- 54. Total Surface Area of Hemisphere is_____.
 - (A) Total Surface Area = πr^2

(A) Total Surface Area = r^2

- (C) Total Surface Area = $2 \pi r^2$
- (D) Total Surface Area = $3 \pi r^2$

Answer: - Option D

Explanation: - According to Formula: Total Surface Area $=3~\pi~r^2$

- 55. Find the Volume of Cuboid if the length, breadth and height are 25cm, 51cm, and 52cm respectively.
 - (A) 66300 cm³

(B) 6300 cm³

(C) 36300 cm³

(D) 65300 cm³

Answer: - Option A

Explanation: - According to Formula: Volume = $l \times b \times h$

ESTD-1996

Prepared By Mr. Jadhav G. R. Verified By
Mr. Jadhav G. R.
Module Coordinator

Re-Verified By Mr. Dhavan P. P. Academic Coordinator Approved By Mr. Pathak S. R. First Year Coordinator

ZPOLY

ZEAL EDUCATION SOCIETY'S

ZEAL POLYTECHNIC, PUNE

NARHE | PUNE -41 | INDIA

05 – Statistics	Marks: - 14
-----------------	-------------

Content of Chapter:-

- 5.1 Range, coefficient of range of discrete and grouped data.
- 5.2 Mean deviation and standard deviation from mean of grouped and ungrouped data, weighted means.
- 5.3 Variance and coefficient of variance.
- 5.4 Comparison of two sets of observation.
- 1. The distribution 3, 5, 7, 8, 3, 9, 5, 7, 10 is_
 - (A) Grouped data

(B) Ungrouped data

(C) Raw data

(D) None of these

Answer: - Option C

Explanation: - According to definition of Raw data.

2. The following data is -----type

Marks	3 - 5	5 - 7	7 - 9	9 - 11	11 - 13
No. of students	4	3	10	12	V/7

(A) Grouped data

(B) Ungrouped data

(C) Raw data

(D) None of these

Answer: - Option A

Explanation: - According to definition of Grouped data.

3. The following data is ----type.

Wt. of items in gms	50	100	150	200	250
No. of items	4	10	15	20	7

(A) Grouped data

(B) Ungrouped data

(C) Raw data

(D) None of these

Answer: - Option B

Explanation: - According to definition of Ungrouped data.

- The 5 is the frequency of _____observation from the data 1.2, 1.21,1.5,1.2, 1.5, 1.4, 1.41,1.21, 1.5, 1.2, 1.8, 1.7, 1.8, 1.81, 1.4, 1.5, 1.2, 1.6, 1.7, 1.5, 1.8, 1.31,1.2, 1.2.
 - (A) 1.8

(B) 1.2

(C) 1.5

(D) 1.21

Answer: - Option C

Explanation: - Frequency means number of occurrence (or number of repetitions) of observation in the given data. Here 1.5 is repeated 5 times, so 5 is the frequency of 1.5.

٥.	The correct formula to find class-mark for group	ed irequeitcy distribution is
	(A) $\frac{\text{Upper limit-Lower limit}}{2}$	(B) $\frac{\text{Lower limit-Upper limit}}{2}$
	(C) $\frac{\text{Upper limit} + \text{Lower limit}}{2}$	(D) None of these
	Answer: - Option C	
	Explanation: - Class marks is the average of upper	and lower limit of the class interval.
6.	The correct formula for class length of grouped	frequency distribution is
	(A) U. L + L. L	$(B) \frac{L.L-U.L}{2}$
	(C) $\frac{\text{L.L+U.L}}{2}$	(D) U. L — L. L
	Answer: - Option D	
	Explanation: - According to definition of class length	h.
7.	is the relative measure.	
	(A) Variance	(B) Standard deviation
	(C) Range	(D) Mean Deviation
	Answer: - Option A	
	Explanation: - According to definition of Variance.	
8.	is the absolute measure.	
	(A) Variance	(B) Standard deviation
	(C) Range	(D) Mean Deviation
	Answer: - Option B	
	Explanation: - According to definition of Standard d	leviation.
9.	Range of the distribution is given by	
	(A) $L - S$ (C) $\frac{L + S}{L - S}$	(B) $L + S$
	$(C)\frac{L+S}{L-S}$	$(D)\frac{L-S}{L+S}$
	Answer: - Option A	
	Explanation: - According to definition of range.	
10.	Coefficient of Range =	
	$(A) \frac{\text{Range}}{L - S}$	$(B) \frac{L+S}{L-S}$
	(C) $L + S$	$(D) \frac{L-S}{L+S}$
	Answer: - Option D	
	Explanation: - According to formula.	

11.	$\frac{\text{Range}}{\text{L}-\text{S}} = \underline{\hspace{1cm}}$	
	(A) 1	(B) Range
	(C) -1	(D) 0
	Answer: - Option A	
	Explanation: - According to formula.	
12.	Coefficient of Range =	
	$(A)\frac{L+S}{L-S}$	$(B)\frac{Range}{L-S}$
	$(C) \frac{Range}{Range + 2s}$	$(D) \frac{Range}{Range + s}$
	Answer: - Option C	nange i b
	Explanation: - According to formula.	
13.	The Range of 10, 5, 12, 2, 15, 20, 8, 10 is	OA- "
	(A) 18	(B) 22
	(C) 20	(D) 2
	Answer: - Option A	
	Explanation: - According to formula $L - S$	
14.	The Range and coefficient of Range of the data	120, 100, 130, 50, 150 are respectively.
	(A) 5.5, 50	(B) 50, 0.5
	(C) 2, 100	(D) 100, 0.5
	Answer: - Option D	190
	Explanation: - According to formula Range = L -	S and Coefficient of Range = $\frac{L-S}{L+S}$
15.	The class marks of a certain frequency distribut	ion are 15, 25, 35, 45, 55, 65 then the range =
	(A) 25	(B) 50
	(C) 55	(D) 65
	Answer: - Option B	
	Explanation: - According to formula Range L - S.	
16.	The Range and coefficient of Range of 5, 7, 9, 13	3, 11, 5, 3 are
	(A) 5, 11	(B) 10, 0.61
	(C) 10, 0.625	(D) 5, 0.5
	Answer: - Option C	
	Explanation: - According to formula Range = L -	S and Coefficient of Range = $\frac{L-S}{L+S}$

17.	The coefficient of	of Range	of 50, 90, 12	20, 40, 180	, 200, 80 is	s			
	(A) 0.60	_			(B) 0.69				
	(C) 0.65				(D) 0.67	7			
	Answer: - Option	D							
	Explanation: - A	ccording to	o formula Co	efficient of	f Range =	$\frac{L-S}{L+S}$			
18.	The Range of the					ГТЗ			
	x_i	3	8	13	18	3	23	28	33
	f_i	1	4	5	(D) 26		2	3	10
	(A) 30				(B) 36				
	(C) 11				(D) 9				
	Answer: - Option	Α		AT	10				
40	Explanation: - A The Range and o					ribution a	ro		
19.	Marks	5	15	25	35	45	55		
	No. of students		20	30	40	50	60		
	(A) 50, 0.7142	10	4		(B) 50, (0.833	1		
	(C) 55, 0.833				(D) 55, (7142			
					(D) 55, (J. 1 1 TZ			
	Answer: - Option	В			(B) 33, (J.1 142			
	•		o formula Ra	ange = L -	-		of Range	$=\frac{L-S}{L+S}$	
20.	Answer: - Option Explanation: - A The Range and o	ccording to			- S and C	coefficient		$=\frac{L-S}{L+S}$	
20.	Explanation: - A	ccording to	t of Range		- S and C	coefficient		$=\frac{L-S}{L+S}$	
20.	Explanation: - A	ccording to	t of Range	of the follo	- S and C	coefficient of a	re	$=\frac{L-S}{L+S}$	
20.	Explanation: - A The Range and o	ccording to	t of Range	of the folio	- S and Cowing dist	ribution a 40 - 50 30	re	$=\frac{L-S}{L+S}$	
20.	Explanation: - A The Range and o Marks No. of students	ccording to	t of Range	of the folio	- S and Cowing dist 30 - 40 25 (B) 15, (ribution a 40 - 50 30	re 50 - 60 25	$= \frac{L-S}{L+S}$	
20.	Explanation: - And The Range and of Marks No. of students (A) 60, 0	coording to coefficien 0 - 10 10	t of Range	of the folio	- S and Cowing dist 30 - 40 25 (B) 15, (coefficient of ribution a 40 - 50 30 0.4285	re 50 - 60 25	$=\frac{L-S}{L+S}$	
20.	Explanation: - And The Range and of Marks Mo. of students (A) 60, 0 (C) 60, 1 Answer: - Option	coefficien 0 - 10 10	10 - 20 20	of the follo	- S and Coving dist 30 - 40 25 (B) 15, (C) Non-	ribution a 40 - 50 30 0.4285 e of these	re		
20.	Explanation: - And The Range and of Marks No. of students (A) 60, 0 (C) 60, 1	coording to	t of Range of 10 - 20 20 20 approximately a formula Ra	of the following the following states and the following states and the following states are states are states and the following states are states	- S and Coving dist 30 - 40 25 (B) 15, (C) Non-	ribution a 40 - 50 30 0.4285 e of these	re		
	Explanation: - And The Range and of Marks No. of students (A) 60, 0 (C) 60, 1 Answer: - Option Explanation: - And The Range of the Max Temp	coording to coefficien 0 - 10 10 Cocording to coording to coordinate coord	t of Range of 10 - 20 20 20 construing formula Range distribution 27 - 28 2	of the following the following series angle = L - on is 9 - 30 31	- S and Coving dist 30 - 40 25 (B) 15, (C) Non S and Coving dist	coefficient of these coefficient of these coefficient of the second co	50 - 60 25 of Range		
	Explanation: - And The Range and of Marks No. of students (A) 60, 0 (C) 60, 1 Answer: - Option Explanation: - And The Range of the Max Temp No. of Days	coording to coefficien 0 - 10 10 C ccording to cefollowing	t of Range (10 - 20 20) of formula Range (10 distribution)	of the following the following series angle = L - on is 9 - 30 31	- S and Coving dist 30 - 40 25 (B) 15, (C) Non S and Coving dist	coefficient of the second coefficient of these coefficient of the second coefficient of the seco	50 - 60 25 of Range		
	Explanation: - And The Range and of Marks No. of students (A) 60, 0 (C) 60, 1 Answer: - Option Explanation: - And The Range of the Max Temp No. of Days (A) 12	coording to coefficien 0 - 10 10 Cocording to coording to coordinate coord	t of Range of 10 - 20 20 20 construing formula Range distribution 27 - 28 2	of the following the following series angle = L - on is 9 - 30 31	- S and Coving dist 30 - 40 25 (B) 15, (C) Non S and Coving dist - S and Coving dis	coefficient of these coefficient of these coefficient of the second co	50 - 60 25 of Range		
	Explanation: - And The Range and of Marks No. of students (A) 60, 0 (C) 60, 1 Answer: - Option Explanation: - And The Range of the Max Temp No. of Days	coording to coefficien 0 - 10 10 Cocording to coording to coordinate coord	t of Range of 10 - 20 20 20 construing formula Range distribution 27 - 28 2	of the following the following series angle = L - on is 9 - 30 31	- S and Coving dist 30 - 40 25 (B) 15, (C) Non S and Coving dist	coefficient of these coefficient of these coefficient of the second co	50 - 60 25 of Range		
	Explanation: - And The Range and of Marks No. of students (A) 60, 0 (C) 60, 1 Answer: - Option Explanation: - And The Range of the Max Temp No. of Days (A) 12	C ccording to coefficien 0 - 10 10 C ccording to ce followin 25 - 26 2	t of Range of 10 - 20 20 20 construing formula Range distribution 27 - 28 2	of the following the following series angle = L - on is 9 - 30 31	- S and Coving dist 30 - 40 25 (B) 15, (C) Non S and Coving dist - S and Coving dis	coefficient of these coefficient of these coefficient of the second co	50 - 60 25 of Range		
	Explanation: - And The Range and of Marks No. of students (A) 60, 0 (C) 60, 1 Answer: - Option Explanation: - And The Range of the Max Temp No. of Days (A) 12 (C) 13	C ccording to C ccording to E following 25 - 26 2	t of Range of 10 - 20 20 20 20 20 20 20 20 20 20 20 20 20	of the following in the following is the following is the following in the following is the following in the following is the	- S and C owing dist 30 - 40 25 (B) 15, (C) Non - S and C 1 - 32 33 10 (B) 11 (D) 10	coefficient of these coefficient of these coefficient of the second co	50 - 60 25 of Range		

Marks	10 - 19	20 - 29	30 - 39	40 - 49	50 - 59	60 - 69	
No. of students	6	10	16	14	8	4	
A) 59, 0.7468				(B) 60	, 0.76		
C) 58, 0.76				(D) 59	9, 0.716		
Answer: - Option E	3						
Explanation: - Acc	ording to f	ormula Ra	ange = L	- S and	Coefficient	of Range = $\frac{I}{I}$	$\frac{z-S}{z+S}$
n two factories A		gaged in	the same	industria	I area, the	average wee	kly wages an
D. are as follows. Facto			Ave	rage wag	 es	Stand	lard Deviation
Α				34.5			5.0
В				28.5			4.5
Which factory A A) Factory A	or B is mo	ore consi	stent?	(R) Fo	ctory B		
A) Faciory A				1.9	1.0		
C) Both A and B				(D) N	one of thes	е	
nswer: - Option A	1/4						
Explanation: - Acc	cording to f	ormula c.	$v_{\cdot} = \frac{\sigma}{\overline{X}} \times$	100, c.v	of A < c. \	v. of B.	
Find standard dev	riation of t	he follow	ing data	6, 7, 10, 1	2, 13, 4, 8,	12.	
(A) 4.04		(B) 3.04					
(C) 5.04 (D) 6.04			04				
Answer: - Option E	3		ZU!				
Explanation: - Acc	ording to f	ormula S.	$D. = \frac{\sqrt{(x)}}{x}$	$\frac{1}{n} - \overline{X})^2$			
ind standard dev					, 15, 10, 18	, 5.	
Δ) 4 87				(B) 3.8			

- 25.
 - (A) 4.87

23.

24.

(C) 5.87

(D) 6.87

Answer: - Option A

Explanation: - According to formula S.D. =

- 26. The class marks of a certain frequency distribution are 15, 25, 35, 45, 55, 65 then the range = ____.
 - (A) 25

(B) 50

(C) 55

(D) 65

Answer: - Option B

Explanation: - According to formula Range L - S.

27.	The class marks of a certain frequency distribut	ion are 15, 25, 35, 45, 55, 65 then the range =					
	(A) 25	(B) 50					
	(C) 55	(D) 65					
	Answer: - Option B						
	Explanation: - According to formula Range L - S.						
28.	The class marks of a certain frequency distribut	ion are 15, 25, 35, 45, 55, 65 then the range =					
	(A) 25	(B) 50					
	(C) 55	(D) 65					
	Answer: - Option B						
	Explanation: - According to formula Range L - S.						
29.	The class marks of a certain frequency distribut	ion are 15, 25, 35, 45, 55, 65 then the range =					
	(A) 25	(B) 50					
	(C) 55	(D) 65					
	Answer: - Option B						
	Explanation: - According to formula Range $L-S$.						
30.	The class marks of a certain frequency distribut	ion are 15, 25, 35, 45, 55, 65 then the range =					
	(A) 25	(B) 50					
	(C) 55	(D) 65					
	Answer: - Option B						
	Explanation: - According to formula Range L - S.						
	7FAI POIV						

Prepared By Mr. Jadhav G. R.	Verified By Mr. Jadhav G. R. Module Coordinator	Re-Verified By Mr. Dhavan P. P. Academic Coordinator	Approved By Mr. Pathak S. R. First Year Coordinator
	module occiumate	, todaetino ocoraniator	The Teal Section and