ZEAL EDUCATION SOCIETY'S ### ZEAL POLYTECHNIC, PUNE ### **Question Bank for Multiple Choice Questions** | Program: All Programs in Diploma Engineering | Program Code: - CE/CO/ME/EE/EJ | |--|--------------------------------| | Scheme:-I | Semester:- 1 | | Course:- Basic Mathematics | Course Code:- 22103 | | 01 – Algebra | Marks:-20 | | |-----------------------|-----------|--| | Content of Chapter:- | | | | 1.1 Logarithms | | | | 1.2 Determinants | | | | 1.3 Matrices | 12 2 2 2 | | | 1.4 Partial Fractions | | | ### 1.1 Logarithms - 1. The value of : $\log_a 1 = ---$ - (A) 1 (B) 2 (C) 0 (D) a Answer: - Option C Explanation: - Basic Property of logarithm - 2. The value of: $\log_{10} 10 = ----$ - (A) 1 (B) 2 (C) 0 (D) a **Answer: -** Option A Explanation: - Basic Property of logarithm - 3. The value of $\log_a a = ----$ - (A) 1 (B) 2 (C) 0 (D) a Answer: - Option A **Explanation: -** Basic Property of logarithm | 4. | The value of: | $\log_{81} 3_{\blacksquare}$ | | |----|---------------|------------------------------|--| |----|---------------|------------------------------|--| (A) 3 (B) $\frac{1}{4}$ (C) 81 (D) $\frac{2}{4}$ Answer: - Option B **Explanation: -** Converting into Exponential form 5. The value of: $$\log_{5} 625 =$$ (A) 4 (B) 5 (C)25 (D) 625 Answer: - Option A **Explanation: -** Converting into Exponential form - 6. The value of: $\log_3 81 =$ - (A) 81 (B) 3 (C) 1 (D) 4 Answer: - Option D Explanation: - Converting into Exponential form - 7. The value of : $\log_{343} 7 =$ - (A) $\frac{1}{3}$ (B) ² $\frac{1}{(C)}$ (D) $\frac{1}{5}$ **Answer: -** Option A Explanation: - Converting into Exponential form - 8. The value of x if $\log_3 27 = x$ - (A) 1 (B) 2 (C) 3 (D) 4 Answer: - Option C **Explanation: -** Converting into Exponential form - 9. The value of x if $\log_2(x-3) = 3$ - (A) 3 (B) 2 (C) 11 (D) 10 Answer: - Option C **Explanation:-** Converting into Exponential form - 10. The value of x if- $\log_2(x^2 6x + 40) = 5$ - (A) 4 (B) 2 (C) 4, 2 (D) 3 Answer: - Option C **Explanation: -** Converting into Exponential form - 11. The value of x if $\log_3(x+6) = 2$ - (A) 3 (B)6 (C) 2 (D)1 Answer: - Option A **Explanation:** -Converting into Exponential form 12. $\log_a\!\left(\frac{m}{n}\right) = -----$ If m, n, a are positive real numbers and $a \ne 1$ then (A) $\log_a m - \log_a n$ (B) $\log_a m + \log_a n$ (C)) $\log_a m \log_a n$ (D) $\frac{\log_a m}{\log_a n}$ Answer: - Option A Explanation: - Basic Property of logarithm - 13. If m and a are positive real numbers. $a \ne 1$ then $\log_a(m)^n =$ - (A) $\log_a m \log_a n$ (B) $\log_a m + \log_a n$ (C) $n \log_a m$ (D) $\log_a m \log_a n$ Answer: - Option C **Explanation: -** Basic Property of logarithm | 14. | If m, n, a are positive real numbers then | $\log_a(mn) =$ | |-----|---|----------------| | | (A) $\log_a m - \log_a n$ | (B) $\log_a n$ | $$(C) \log_a m \log_a n$$ (B) $$\log_a m + \log_a n$$ (C) $$\log_a m \log_a n$$ (D) $$\frac{\log_a m}{\log_a n}$$ Answer: - Option B Explanation: - Basic Property of logarithm 15. The value of x if $\log_3(x+5) = 4$ $$(A) x = 81$$ (B) $$x = 86$$ (C) $$x = 76$$ (D) $$x = 91$$ Answer: - Option C **Explanation: -** Converting into Exponential form 16. $\log\left(\frac{2}{3}\right) + \log\left(\frac{4}{5}\right) - \log\left(\frac{8}{15}\right)$ The value of Answer: - Option D **Explanation: -** Use logarithm of product and quotient $\log\left(\frac{225}{32}\right) - \log\left(\frac{25}{81}\right) + \log\left(\frac{64}{729}\right)$ 17. The value of (A) log 5 (C) log 2 Answer: - Option C Explanation: - Use logarithm of product and quotient The value of : $\frac{1}{\log_3 6} + \frac{1}{\log_8 6} + \frac{1}{\log_9 6} =$ 18. (A) 3 (B)6 (C)8 (D) 9 Answer: - Option A Explanation: - By Rule of change of base 19. The value of $$\frac{1}{\log_{ab}abc} + \frac{1}{\log_{bc}abc} + \frac{1}{\log_{ac}abc} =$$ (A) 4 (B)3 (C)2 (D) 1 Answer: - Option C Explanation: - By Rule of change of base 20. $$\log \left(\frac{p^2}{qr}\right) + \log \left(\frac{q^2}{rp}\right) + \log \left(\frac{r^2}{pq}\right) = ---$$ The value of : (A) 1 (B)2 (C) 3 Answer: - Option D **Explanation:** Use logarithm of product The value of : $$\log_y x^2 \times \log_z y^3 \times \log_x z^4 = ----$$ (A) 24 (B) 34 (C)44 (D) 54 Answer: - Option A Explanation: - Use log of power and Rule of change of base 22. The value of : $$\frac{1}{\log_6 24} + \frac{1}{\log_{12} 24} + \frac{1}{\log_8 24} = ---$$ (A) 1 (B)2 (C) 3 (D) 4 Answer: - Option B Explanation: - Use log of power and Rule of change of base 1.2 Determinants 23. Value of determinant $\begin{vmatrix} 5 & 3 \\ 2 & 4 \end{vmatrix} = \dots$ (A) -14 (B) 14 (C) 12 (D) -12 Answer: - Option B **Explanation:** = (5X4)-(3X2) 24. Value of determinant $\begin{vmatrix} 2 & -4 \\ 2 & -1 \end{vmatrix} = \dots$ (A) -2 (B) 0 (C)-4 (D) 6 Answer: - Option D **Explanation:** - = (2X(-1)) - (2X(-4)) 25. Value of determinant $\begin{vmatrix} sin\theta & cos\theta \\ -cos\theta & sin\theta \end{vmatrix} = ...$ (A) 2 (B) 0 (C) -1 (D) 1 Answer: - Option D Explanation: - By evaluating determinant 26. Value of determinant $\begin{vmatrix} 2 & 3 & 5 \\ 1 & 4 & 2 \\ 3 & 1 & 6 \end{vmatrix} = ...$ (A)-10 (B) 12 (C) -11 (D)-12 Answer: - Option C **Explanation:-** By evaluating determinant 27. Value of determinant $\begin{vmatrix} 1 & 0 & 6 \\ 7 & 2 & 5 \\ 3 & 4 & 6 \end{vmatrix} = ...$ (A) 138 (B) 124 (C) 110 (D) 120 Answer: - Option B **Explanation: -** By evaluating determinant 28. For the equation $\begin{vmatrix} x & 4 \\ 3 & 6 \end{vmatrix} = 0$, the value of 'x' is ... (A) 0 (B) 2 (C) 1 (D) -1 Answer: - Option B Explanation: - By evaluating determinant **Explanation: - By evaluating determinant** The solution of the system of equations 32. $$x + y + z = 6$$, $2x + y - 2z = -2$, $x + y - 3z = -6$ is (A) 1,1,1 (B) 1,2,3 (C) 0,1,1 (D) 1,0,-1 **Answer: -** Option A Explanation: - Use Cramer's rule for finding values of x,y,z The solution of the system of equations 33. x + z = 4, y + z = 2, x + y = 0 is (A) 3,1,0 (B) 1,-1,3 (C) 0,1,3 (D))-3,0,-1 Answer: - Option B **Explanation:** Use Cramer's rule for finding values of x,y,z | 34. | The voltages in an electric circuit are related by + V_2 - V_3 =1 Then values of V_1 , V_2 , V_3 are | the equations. $V_1 + V_2 + V_3 = 9$, $V_1 - V_2 + V_3 = 3$, V_1 | |-----|--|--| | | (A) 2,3,4 | (B) 1,2,3 | | | (C) 1,1,1 | (D) 1,3,5 | | | Answer: - Option A | | | 35. | Explanation: - Use Cramer's rule for finding values of x,y,z
The value of determinant 'D' in the system of equations
x - y - 2z = 1, $2x + 3y + 4z = 4$, $3x - 2y - 6z = 5$ is | | | | (A) -8 | (B)-16 | | | (C) 8 | (D) 16 | | | Answer: - Option A | | | 36. | Explanation: -Writing all equations in determinant
The value of 'y' in the system of equations
x + y + z = 3, $x - y + z = 1$, $x + y - 2z = 0$ is | form and evaluate determinant D. | | | (A) 0 | (B)1 | | | (C) 2 | (D) 3 | | | Answer: - Option B | | | | Explanation: -Use Cramer's rule and solve for y | | | | 1.3 Matrices | | | 37. | In a square matrix | 1906 | | | (A) number of rows and columns are equal | (B) number of rows and columns are not equal | | | (C) number of rows is greater than columns | (D) number of columns is greater than rows | | | Answer: - Option A | | | 38. | Explanation: -By using definition of square matrix Order of the matrix [1 2 -4 0] is | | | | (A) 1×1 | (B) 1 × 4 | | | (C) 4×1 | (D) 4×4 | | | Answer: - Option B | | | | Explanation: - Order = number of rows into number | r of columns | - 39. Which of the following is scalar matrix...? - (A) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $(B)\begin{bmatrix} 3 & 0 \\ 0 & 7 \end{bmatrix}$ $(D)\begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$ (C) $\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$ Answer: - Option D **Explanation:** -Use Defination of Scalar matrix - 40. If $A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 7 \\ 1 & 9 \end{bmatrix}$, then 2A+3B = ...(A) $\begin{bmatrix} 12 & 35 \\ 18 & 19 \end{bmatrix}$ (C) $\begin{bmatrix} 22 & 15 \\ 13 & 45 \end{bmatrix}$ Answer: - Option B **Explanation:** - Use Multiplication to matrix by scalar and then addition of matrices - 41. If $\begin{bmatrix} 4 & 5 \\ -3 & 6 \end{bmatrix} + X = \begin{bmatrix} 10 & -1 \\ 0 & -6 \end{bmatrix}$, then matrix X = ... - $\begin{array}{ccc} \text{(A)} \begin{bmatrix} 3 & 6 \\ 2 & -10 \end{bmatrix} \\ \text{(C)} \begin{bmatrix} 2 & 8 \\ 10 & 9 \end{bmatrix}$ (B) $\begin{bmatrix} 6 & -6 \\ 3 & -12 \end{bmatrix}$ (D) $\begin{bmatrix} 5 & -8 \\ 1 & 5 \end{bmatrix}$ Answer: - Option B Explanation: -Use Subtraction of matrices - 42. If $\begin{bmatrix} -3 & x \\ 2y & 0 \end{bmatrix} + \begin{bmatrix} 4 & 6 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 7 \\ -5 & 1 \end{bmatrix}$, then values 'x'& 'y' are ... - (A) 1,-2 (B) 0,1 (C) 2,0 (D) 1,-1 Answer: - Option D **Explanation: -**. Use Addition and Equality of matrices - 43. If order of matrix 'A' is 2×3 and order of matrix 'B' is 3×4 , then order of their multiplication matrix 'AB' is ... - $(A) 2 \times 2$ - (C) 2×4 - (B) 3×3 (D) 4×4 Answer: - Option C **Explanation: -** Use Inner product of Matrices - If $A = \begin{bmatrix} 3 & 4 & -2 \\ 2 & 1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 2 & -1 \\ 3 & 4 \\ 0 & 2 \end{bmatrix}$, then (AB) = (B) $\begin{bmatrix} 6 & 9 \\ 7 & -12 \end{bmatrix}$ (D) $\begin{bmatrix} 2 & 18 \\ 6 & 9 \end{bmatrix}$ Answer: - Option A **Explanation: -**. Use Multiplication of 2 Matrices Answer: - Option O **Explanation: -** Use Property of Transposition of Matrices - 51. The matrix 'A' is called singular iff |A| ... - (A)
= 0 (B) = I $(C) \neq 0$ (D) = A Answer: - Option C **Explanation: -** Use Defination of singular Matrix - 52. |AB| = ... - (A) A (B) |B| (C)) I (D) |A||B| Answer: - Option D Explanation: - Use Property of Determinant of Matrices - 53. The matrix $\begin{bmatrix} 4 & 6 \\ 2 & 3 \end{bmatrix}$ is ... - (A) singular (B) non-singular (C) symmetric (D) skew-symmetric Answer: - Option A Explanation: -. As determinant is zero hence singular matrix - In the matrix $\begin{bmatrix} 1 & 2 & 3 \\ -4 & 5 & 6 \\ -7 & 8 & 9 \end{bmatrix}$, then minor of element '6' is ... 54. - (A) 12 (C) 42 (D) 22 Answer: - Option D **Explanation:** - Solve determinant by eliminating second row and third coloumn. - In the matrix $\begin{bmatrix} 2 & -3 & 4 \\ 0 & 1 & -5 \\ 6 & 2 & -4 \end{bmatrix}$, cofactor of element '0' is ... 55. - (A) -4 (C) 20 (D) -20 Answer: - Option A Explanation: - Solve determinant by eliminating second row and first column - 56. The adjoint of matrix $\begin{bmatrix} 6 & 5 \\ 2 & 1 \end{bmatrix}$ is ... - $(A)\begin{bmatrix}1 & -9\\7 & 2\end{bmatrix}$ $\begin{array}{c} \text{(B)} \begin{bmatrix} 6 & 9 \\ 7 & -12 \end{bmatrix} \\ \text{(D)} \begin{bmatrix} 2 & 1 \\ -6 & -9 \end{bmatrix}$ $(C)\begin{bmatrix} 1 & -5 \\ -2 & 6 \end{bmatrix}$ Answer: - Option C **Explanation: -** Find Cofactors and matrix of cofactors - 57. Inverse of a square matrix 'A' exists, iff A is ... - (A) singular (B) non-singular (C)) symmetric (D) skew-symmetric Answer: - Option B **Explanation:** - Condition Of Inverse of a matrix - 58. $A A^{-1} = ...$ - $(A) A^T$ (B) null matrix (C) I (D) none of these Answer: - Option C Explanation: -. Property Of Inverse of a matrix - 59. $(A^{-1})^{-1} = ...$ - (A) O (B) A (C) I (D) none of these Answer: - Option B **Explanation: -** Property Of Inverse of a matrix. - If $A = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$, then $A^{-1} = \dots$ 60. Answer: - Option A Explanation: - Find adjoint and determinant of matrix - 61. If $A = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}$, then $A^{-1} = ...$ Answer: - Option D **Explanation:** - Find adjoint and determinant of matrix - 62. Which of the following is proper fraction? - (A) $\frac{X-2}{X^3+1}$ (B) $\frac{X^3+1}{X-2}$ (D) $\frac{X^3+1}{X^4}$ (C) $\frac{X^4}{X^3+1}$ Answer: - Option A **Explanation:** - Defination of proper fraction 63. Which of the following is improper fraction? (A) $$\frac{X-2}{X^3+1}$$ (B) $$\frac{X^3+1}{(X-2)^4}$$ (C) $$\frac{X^3+1}{X^4}$$ (D) $$\frac{X^4}{X^3+1}$$ Answer: - Option D **Explanation: -** Defination of Improper fraction 64. Which of the following has irreducible Quadratic Denominator? (A) $$\frac{x-2}{x^2-4}$$ (B)) $$\frac{x-1}{x^2+4}$$ (C) $$\frac{x-4}{x^3-9}$$ (D) $$\frac{x-4}{x^2-9}$$ Answer: - Option B Explanation: - Defination of irreducible quadratic factor 65. Which of the following has reducible Quadratic Denominator? (A) $$\frac{x-2}{x^2-4}$$ (B) $$\frac{x-4}{x^2+9}$$ (C) $$\frac{x-4}{x^3+9}$$ (D) $$\frac{x-1}{x^2+4}$$ Answer: - Option A Explanation: - Defination of reducible quadratic factor 66. The partial fractions of $\frac{x}{x^2+x-2}$ are (A) $$\frac{1}{3} \left[\frac{2}{x+2} + \frac{1}{x-1} \right]$$ (B) $$\frac{1}{2} \left[\frac{3}{x+2} - \frac{1}{x-1} \right]$$ (C) $$\frac{1}{2} \left[\frac{3}{x+2} + \frac{1}{x-1} \right]$$ $$(D)\frac{1}{3}\left[\frac{2}{r+2}-\frac{1}{r-1}\right]$$ Answer: - Option C Explanation: - Denominator has non repeated linear factors 67. Values of A and B in partial fraction of $\frac{e^x+1}{(e^x+2)(e^x+3)}$ are $$(A) -1,2$$ Answer: - Option A **Explanation:** - Denominator has non repeated linear factors, put $e^x = t$ 68. Partial fraction of $\frac{1}{x^3-x}$ are (A)) $$\frac{1}{2} \left[\frac{1}{x+1} + \frac{1}{x-1} \right] + \frac{1}{x}$$ (B) $$\frac{1}{2} \left[\frac{1}{x+1} - \frac{1}{x-1} \right] - \frac{1}{x}$$ (C) $$\frac{1}{2} \left[\frac{1}{x+1} - \frac{1}{x-1} \right] + \frac{1}{x}$$ (D) $$\frac{1}{2} \left[\frac{1}{x+1} + \frac{1}{x-1} \right] - \frac{1}{x}$$ Answer: - Option D **Explanation:** - Denominator has non repeated linear factors 69. Partial fraction of $$\frac{1}{1-x^2}$$ are (A) $$\frac{1}{2} \left[\frac{1}{1+x} + \frac{1}{1-x} \right]$$ (B) $$\frac{1}{2} \left[\frac{1}{1+x} - \frac{1}{x-1} \right]$$ $$(C)\frac{1}{2}\left[\frac{1}{1+x}-\frac{1}{1-x}\right]$$ (D) $$\frac{1}{2} \left[\frac{1}{1+x} + \frac{1}{x-1} \right]$$ Answer: - Option A Explanation: - Denominator has non repeated linear factors # 70. Partial fraction of $\frac{1}{x^2-x}$ are $$(\mathsf{A})\,\frac{1}{x-1}-\frac{1}{x}$$ $$(\mathsf{B})\,\frac{1}{x}-\frac{1}{x-1}$$ (C) $$\frac{1}{x} + \frac{1}{x-1}$$ (D) $$\frac{1}{x-1} + \frac{1}{x}$$ Answer: - Option A Explanation: - Denominator has non repeated linear factors ### 71. Partial fraction of $\frac{1}{x^2+3x+2}$ are (A) $$\frac{1}{x+2} - \frac{1}{x+1}$$ (B) $$\frac{1}{x+1} - \frac{1}{x+2}$$ $$(\mathsf{C})\,\frac{1}{x+2}+\frac{1}{x+1}$$ (B) $$\frac{1}{x+1} - \frac{1}{x+2}$$ (D) $\frac{1}{x+2} + \frac{2}{x+1}$ Answer: - Option B **Explanation:** - Denominator has non repeated linear factors ### 72. Proper fraction after polynomial division of $\frac{x^2+1}{x^2-1}$ is (A) $$\frac{2}{x^2-1}$$ (B) $$\frac{2}{x^2+1}$$ (C) $$\frac{1}{x^2-1}$$ (D) $$\frac{1}{x^2+1}$$ Answer: - Option A Explanation: - Taking actual polynomial division # 73. Proper fraction after polynomial division of $\frac{x^4}{x^3+1}$ is (A) $$\frac{x}{x^3+1}$$ (B) $$\frac{-x}{x^3+1}$$ (C) $$\frac{x}{x^3-1}$$ $$(\mathsf{D})\,\frac{-x}{x^3-1}$$ Answer: - Option B Explanation: - Converting it into proper fraction # 74. Partial fraction of $\frac{1}{x^2-1}$ are $$(A) \frac{1}{2} \left[\frac{1}{x-1} - \frac{1}{x+1} \right]$$ (B) $$\frac{1}{2} \left[\frac{1}{x+1} - \frac{1}{x-1} \right]$$ (C) $$\frac{1}{2} \left[\frac{1}{x-1} + \frac{1}{x+1} \right]$$ (D) $$\frac{1}{3} \left[\frac{1}{x+1} - \frac{1}{x-1} \right]$$ Answer: - Option A **Explanation:** - Denominator has non repeated linear factors ### 75. Partial fraction of $\frac{x-2}{x^2-x}$ are (A) $$\frac{2}{x} + \frac{1}{x^2 - 1}$$ (B) $$\frac{2}{x} - \frac{1}{x-1}$$ (C) $$\frac{2}{x} + \frac{1}{x^2 + 1}$$ (D) $$\frac{2}{x} - \frac{1}{x^2 + 1}$$ Answer: - Option B **Explanation:** - Denominator has non repeated linear factors 76. Partial fraction of $$\frac{x^2-x+3}{(x-2)(x^2+1)}$$ are (A) $$\frac{1}{x-2} + \frac{1}{x^2+1}$$ (B) $$\frac{1}{x-2} - \frac{1}{x^2+1}$$ (C) $$\frac{1}{x-2} - \frac{1}{x^2-1}$$ (D) $$\frac{1}{x+2} - \frac{1}{x^2-1}$$ Answer: - Option B Explanation: - Denominator has irreducible quadratic factor # 77. Partial fraction of $\frac{x+4}{x^2+x}$ are $$(A) \frac{4}{x} - \frac{3}{x-1}$$ (B) $$\frac{4}{x} + \frac{3}{x-1}$$ (C) $$\frac{4}{x} + \frac{3}{x+1}$$ (D) $$\frac{4}{x} - \frac{3}{x+1}$$ Answer: - Option D Explanation: - Denominator has non repeated linear factors # 78. Partial fraction of $\frac{x-1}{x(x^2+1)}$ are $$(A)\frac{x+1}{x^2+1}-\frac{1}{x}$$ (B) $$\frac{x+1}{x^2-1} - \frac{1}{x}$$ (C) $$\frac{x+1}{x^2+1} + \frac{1}{x}$$ (B) $$\frac{x+1}{x^2-1} - \frac{1}{x}$$ (D) $\frac{x-1}{x^2+1} - \frac{1}{x}$ Answer: - Option A Explanation: - Denominator has irreducible quadratic factor # 79. Partial fraction of $\frac{x^3}{x^2-1}$ are (A) $$x + \frac{1}{2} \left[\frac{1}{x-1} + \frac{1}{x+1} \right]$$ (B) $$x - \frac{1}{2} \left[\frac{1}{x-1} - \frac{1}{x+1} \right]$$ (C) $$x - \frac{1}{2} \left[\frac{1}{x-1} + \frac{1}{x+1} \right]$$ (D) $$x + \frac{1}{2} \left[\frac{1}{x-1} - \frac{1}{x+1} \right]$$ Answer: - Option A Explanation: - Converting it into proper fraction # 80. Partial fraction of $\frac{x-2}{x^2-x}$ are $$(A)\frac{2}{x} + \frac{1}{x-1}$$ $$(\mathsf{B})\,\frac{2}{x}-\frac{1}{x-1}$$ (C) $$\frac{2}{x} - \frac{1}{x+1}$$ (D) $$\frac{2}{x} + \frac{3}{x+1}$$ Answer: - Option B Explanation: - Denominator has non repeated linear factors # 81. Partial fraction of $\frac{x+1}{x^3-x^2}$ are (A) $$\frac{2}{x-1} - \frac{2}{x} + \frac{1}{x^2}$$ (B) $$\frac{2}{x+1} - \frac{2}{x} + \frac{1}{x^2}$$ (C) $$\frac{2}{x-1} - \frac{2}{x} - \frac{1}{x^2}$$ (D) $$\frac{2}{x-1} + \frac{2}{x} - \frac{1}{x^2}$$ Answer: - Option C **Explanation: -** Denominator has repeated linear factors ### ZEAL EDUCATION SOCIETY'S ### ZEAL POLYTECHNIC, PUNE ### **Question Bank for Multiple Choice Questions** | Program: All Programs in Diploma Engineering | Program Code: - CE/CO/ME/EE/EJ | |--|--------------------------------| | Scheme: - I | Semester: - 1 | | Course: - Basic Mathematics | Course Code: - 22103 | | 02 – Trigonometry | Marks: - 14 | |--|-------------| | Content of Chapter:- | | | 5.1 Range, coefficient of range of discrete and grouped data. | | | 5.2 Mean deviation and standard deviation from mean of grouped and ungrouped data, weighted means. | | | 5.3 Variance and coefficient of variance. | 1 20 1 30 1 | | 5.4 Comparison of two sets of observation. | | | 1. | If A and B are two angles then A+B is called | | |----|--|-------------------------------------| | •• | (A) Compound Angle | (B) Allied Angle | | | (C) Multiple Angle | (D) Sub-multiple angle | | | Answer: - Option A | | | | Explanation: By definition of compound angle | | | 2. | $\sin(A+B)$ = | | | | (A) $\sin A \cos B - \cos A \sin B$ | (B) $\cos A \cos B + \sin A \sin B$ | | | (C) $\cos A \cos B - \sin A \sin B$ | (D) $\sin A \cos B + \cos A \sin B$ | | | Answer: - Option D | | | | Explanation: - By Formula $sin(A + B) = sin A co$ | $\cos B + \cos A \sin B$ | | 3. | $\sin(A-B) = \underline{\hspace{1cm}}$ | | | | (A) $\sin A \cos B - \cos A \sin B$ | (B) $\cos A \cos B + \sin A \sin B$ | | | (C) $\cos A \cos B - \sin A \sin B$ | (D) $\sin A \cos B + \cos A \sin B$ | | 4. | Answer: - Option A
Explanation: By Formula $sin(A - B) = sin A c$
cos(A - B) = | $\cos B - \cos A \sin B$ | | | (A) $\sin A
\cos B - \cos A \sin B$ | (B) $\cos A \cos B + \sin A \sin B$ | | | (C) $\cos A \cos B - \sin A \sin B$
Answer: - Option B | (D) $\sin A \cos B + \cos A \sin B$ | Explanation: - By Formula cos(A - B) = cos A cos B + sin A sin B $\cos(A + B) =$ 5. (A) $\sin A \cos B - \cos A \sin B$ (B) $\cos A \cos B + \sin A \sin B$ (C) $\cos A \cos B - \sin A \sin B$ (D) $\sin A \cos B + \cos A \sin B$ Answer: - Option C **Explanation:** - By Formula cos(A + B) = cos A cos B - sin A sin B6. Answer: - Option C **Explanation:** -. By Formula $tan(A - B) = \frac{tan A - tan B}{1 + tan A tan B}$ $\tan(A+B) =$ 7. Answer: - Option A **Explanation:** - According to definition of Variance. $\sin A \cos B + \cos A \sin B$ is an expansion of... 8. $(A) \cos(A - B)$ (B) $\sin(A - B)$ (C) sin(A + B)(D) cos(A + B)Answer: - Option C **Explanation:** - By Formula sin(A + B) = sin A cos B + cos A sin B $\sin A \cos B - \cos A \sin B$ is an expansion of... 9. $(A) \cos(A - B)$ (B) $\sin(A - B)$ (D) cos(A + B)(C) sin(A + B)Answer: - Option B **Explanation:** - By Formula sin(A - B) = sin A cos B - cos A sin B $\cos A \cos B - \sin A \sin B$ is an expansion of... 10. $(A) \cos(A - B)$ (B) $\sin(A - B)$ Answer: - Option D (C) sin(A + B) **Explanation:** - By Formula cos(A + B) = cos A cos B - sin A sin B (D) cos(A + B) $\cos A \cos B + \sin A \sin B$ is an expansion of... 11. $(A) \cos(A - B)$ (B) $\sin(A - B)$ $(C) \sin(A + B)$ (D) cos(A + B)Answer: - Option A **Explanation:** - By Formula cos(A - B) = cos A cos B + sin A sin B. 12. $\frac{\tan A - \tan B}{1 + \tan A \tan B}$ is an expansion of (A) tan(A + B)(B) tan 2*A* (C) tan(A - B)(D) tan 2*B* Answer: - Option C **Explanation:** - By Formula $tan(A - B) = \frac{tan A - tan B}{1 + tan A tan B}$ 13. $\frac{\tan A + \tan B}{1 - \tan A \tan B}$ is an expansion of (A) tan(A + B)(B) $\tan 2A$ (C) tan(A - B)(D) $\tan 2B$ Answer: - Option A **Explanation:** - By Formula tan(A + B): Find the value of $\cos(75^{\circ})$ 14. (A) $\frac{1-\sqrt{3}}{2\sqrt{2}}$ (C) $\frac{1+\sqrt{3}}{2\sqrt{2}}$ Answer: - Option B **Explanation:** $-\cos(75^{\circ}) = \cos(45^{\circ} + 30^{\circ})$ Now apply formula $\cos(A + B) = \cos A \cos B - \sin A \sin B$ for finding value of $\cos(75^{\circ})$ If $\tan A = \frac{1}{2}$ and $\tan B = \frac{1}{3}$ then $\tan(A + B)$ is 15. (B) -1 (A) 1(C) 0(D) 2 Answer: - Option A **Explanation:** - Solve by using $tan(A + B) = \frac{tan A + tan B}{1 - tan A tan B}$ $\sin \alpha \cos(\beta - \alpha) + \cos \alpha \sin(\beta - \alpha)$ is equal to 16. (A) $\cos \alpha$ (B) $\cos \beta - \alpha$ (C) $\sin \beta - \alpha$ (D) $\sin \beta$ Answer: - Option D 17. $\frac{\cot A - \cot 2A}{\cot A + \cot 2A} = \frac{\sin A}{\sin 3A} \text{ is}$ $(A) \frac{\sin A}{\sin 3A}$ (B) $\frac{\cos A}{\cos 3A}$ (C) $\frac{\tan A}{\tan 3A}$ (D) None of These Answer: - Option A **Explanation:** - Use $\cot A = \frac{\cos A}{\sin A}$ and $\cot 2A = \frac{\cos 2A}{\sin 2A}$, Simplify it. Then use sin(A + B) = sin A cos B + cos A sin Band sin(A - B) = sin A cos B - cos A sin BYou will find above result is true. If $\tan A = 1$ and $\tan B = 2$ then $\tan C = \dots$, Where A, B, C are the angles of a triangle. 18. (A) 2 (C)4 Answer: - Option C **Explanation:** - Since A, B, C are angles of triangle $: A + B + C = 180^{\circ}$ $$=> A + B = 180^{\circ} - C$$ Operate tangent ratio on both side and use $$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \text{ and } \tan(\pi - \theta) = -\tan \theta$$ Find the value of sin(15°) 19. (A) $\frac{1-\sqrt{3}}{2\sqrt{2}}$ (C) $\frac{1+\sqrt{3}}{2\sqrt{2}}$ Answer: - Option B **Explanation:** - Using compound angle formula cos(A + B) Find the value of cosec(105°) - 20. - (A) $\frac{1-\sqrt{3}}{2\sqrt{2}}$ (B) $\frac{2\sqrt{2}}{\sqrt{3}+1}$ Answer: - Option D **Explanation:** - Using relation $\csc \theta = \frac{1}{\sin \theta}$ and compound angle formula $\sin(A+B)$ Find the value of tan(15°) 21. $(A) \frac{\sqrt{3}-1}{\sqrt{3}+1}$ (B) $\frac{\sqrt{3}+1}{\sqrt{3}-1}$ (D) $\frac{\sqrt{3}-1}{2\sqrt{2}}$ (C) $\frac{1+\sqrt{3}}{2\sqrt{2}}$ Answer: - Option A **Explanation:** - Using compound angle formula tan(A - B) | | If A D and Care ar | agles of a triangle, then we can write $\cot^{(B+C)}$ as | |-----|-----------------------------|---| | 22. | <u>.</u> | ingles of a triangle, then we can write $\cot \frac{(B+C)}{2}$ as | | | (A) $\tan(\frac{A}{2})$ | (B) $\tan(\frac{B+C}{2})$ | | | (C) $\frac{\tan(B+C)}{2}$ | (D) $\tan(\frac{B}{2})$ | | | Answer: - Option A | | | | Ope | A, B, C are angles of triangle $\therefore A + B + C = 180^{\circ} = > B + C = 180^{\circ} - A$ rate cotangent ratio on both side | | 23. | Let $cos(\alpha + \beta) =$ | $\frac{4}{5}$ and let $\sin(\alpha - \beta) = \frac{5}{13}$, where $0 \le \alpha, \beta \le \frac{\pi}{4}$. Then $\tan 2\alpha = ?$ | | | (A) $\frac{25}{16}$ | (B) $\frac{56}{33}$ | | | (C) $\frac{19}{12}$ | $(D)\frac{19}{12}$ | | | Answer: - Option B | 12 | | | • | trigonometric formulae $sin^2 A = cos^2 A - 1$ and $cos^2 A = sin^2 A - 1$, | | | And | compound angle formulae | | 24. | Find the value of si | $n(-765^0)$ | | | $(A) - \frac{1}{\sqrt{2}}$ | (B) $\frac{1}{\sqrt{2}}$ | | | (C) $-\frac{1}{2}$ | (B) $\frac{1}{\sqrt{2}}$ (D) $\frac{1}{2}$ | | | Answer: - Option A | | | | Explanation: - sin(- | -765^{0}) = $-\sin 765^{0}$ = $-\sin (2 \times 360^{0} + 45^{0})$ Since $\sin (2\pi + \theta) = \sin \theta$ | | 0.5 | Find the value of ta | $n(1050^0)$ | | 25. | $(A)^{\frac{1}{2}}$ | $(B)\tfrac{1}{\sqrt{3}}$ | | | (C) $\frac{1}{3}$ | $(D) - \frac{1}{\sqrt{3}}$ | | | Answer: - Option D | V3 | | | Explanation: - Use a | allied angle concept | | | | 0° + 8) sec (-8) tan 180° - 8) / sec (360° - 8) sin 180° + 8) cot (90° - 8) is | | 26. | (A) cos8 | (B) 1 | | | (C) sin8 | (D) -1 | | | () | (<i>D</i>) -1 | | | Answer: - Option D | | | | Explanation: - | | | 27. | The value of sin (18 | $0^{\circ} + 8$) cot ($90^{\circ} - 8$) / sec (-8) + sin ² 8 is | | | (A) -1 | (B) 1 | | | (C) 1 | (D) -2 | | | Answer: - Option C | | | | Explanation: - | | The value of tan 720° - cos 630° - sin 150° cos 120° is 28. (A) $\frac{1}{4}$ (B) 1/3 (C) $\frac{1}{2}$ (D) 1 Answer: - Option A Explanation: - $\sin(\frac{\pi}{2}-\theta) = \underline{\hspace{1cm}}$ (A) $\sin \theta$ (B) $\cos \theta$ (C) $-\sin\theta$ (D) $-\cos\theta$ Answer: - Option B Explanation: - Standard Allied angle ratio $\cos(\frac{\pi}{2} + \theta) = \underline{\hspace{1cm}}$ (A) $\sin \theta$ (B) $\cos \theta$ (C) $-\sin\theta$ (D) $-\cos\theta$ Answer: - Option C Explanation: - Standard Allied angle ratio $\tan(\pi-\theta)=$ (A) $\tan \theta$ (B) $-\tan\theta$ (C) $\cot \theta$ $(D) - \cot \theta$ Answer: - Option B Explanation: - Standard Allied angle ratio $\cot(\pi+\theta)=\underline{\hspace{1cm}}$ (A) $\tan \theta$ (B) – $\tan \theta$ (C) $\cot \theta$ $(D) - \cot \theta$ Answer: - Option C Explanation: - Standard Allied angle ratio $33. \quad \cos(2\pi - \theta) = \underline{\hspace{1cm}}$ (A) $cosec \theta$ (B) $-\sec\theta$ (C) $\cot \theta$ (D) $- \csc \theta$ Answer: - Option D Explanation: - Standard Allied angle ratio | 34. | Find the value of $\cot(\frac{19\pi}{6})$ | | | | |-------------|--|--|--|--| | J 4. | $(A) \sqrt{3}$ | $(B) - \sqrt{3}$ | | | | | (C) 3 | (D) -3 | | | | | Answer: - Option A | | | | | | Explanation: - Solved by using allied angle formula | $\cot(3\pi + \theta) = \cot\theta$ | | | | 35. | Find the value of $tan(225^0) \cot(405^0) + tan$ | Find the value of $tan(225^0) \cot(405^0) + tan(765^0) \cot(765^0)$ | | | | JJ. | (A) 1 | (B) 2 | | | | | (C) -2 | (D) -1 | | | | | Answer: - Option B | | | | | | Explanation: - Use allied angle formula for tanger | at and cotangent ratio also use $ an heta$. $\cot heta=1$ | | | | 36. | If θ be the angle then 2θ , 3θ , 4θ , are called as | | | | | 50. | (A) Compound angles | (B) Allied Angle | | | | | (C) Multiple angle | (D) Sub-multiple angles | | | | | Answer: - Option C | | | | | | Explanation: - By definition of Multiple angles | Explanation: - By definition of Multiple angles | | | | 37. | If θ be the angle then $\frac{\theta}{2}$, $\frac{\theta}{3}$, $\frac{\theta}{4}$ are called as | | | | | ٠,٠ | (A) Compound angles | (B) Allied Angle | | | | | (C) Multiple angle | (D) Sub-multiple angles | | | | | Answer: - Option D | | | | | | Explanation: - By definition of Multiple angles | T988 | | | | 38. | Find $\sin \alpha$ if $\tan(\frac{\alpha}{2}) = \frac{1}{\sqrt{3}}$ | | | | | 00. | (A) $1 \frac{1}{\sqrt{3}}$ | (B) $\frac{\sqrt{3}}{2}$ | | | | | (C) $\sqrt{3}$ | (D) 1 | | | | | Answer: - Option B | | | | | | Explanation: - By using Multiple and sub-multiple a | angle formulae $\sin \alpha = \frac{2\tan(\frac{\alpha}{2})}{1+tan^2(\frac{\alpha}{2})}$ | | | | 39. | What is cotA + cosecA is equal to | | | | | | (A) $\tan(\frac{A}{2})$ | (B) $\cot(\frac{A}{2})$ | | | | | (C) $2\cot(\frac{A}{2})$ | (D) $2\tan(\frac{A}{2})$ | | | | | Answer: - Option B | | | | | | Explanation: - Concept cos 2A = cos ² A – 1 and sir | n2A = 2sinA cosA | | | #### If $\sin A = 0.4$ then find value of $\cos 2A$ 40. (A) 0.50 (B) 0.68 (C) 0.60 (D) 1 Answer: - Option B **Explanation:** - Use $\cos 2A = 1 - 2 \sin^2 A$ to solve above example #### What is sin C + sin D equal to_____ 41. (A) $$2 \sin\left(\frac{C+D}{2}\right) \cdot \cos\left(\frac{C-D}{2}\right)$$ (B) $$-2 \sin\left(\frac{C+D}{2}\right) \cdot \sin\left(\frac{C-D}{2}\right)$$ (C) $$2 \cos\left(\frac{C+D}{2}\right) \cdot \sin\left(\frac{C-D}{2}\right)$$ (D) $$2 \cos\left(\frac{C+D}{2}\right) \cdot \cos\left(\frac{C-D}{2}\right)$$ Answer: - Option A **Explanation: -** By
definition of Multiple angles #### What is sin C - sin D equal to? 42. (A) $$2 \sin\left(\frac{C+D}{2}\right) \cdot \cos\left(\frac{C-D}{2}\right)$$ (B) $$-2 \sin\left(\frac{C+D}{2}\right) \cdot \sin\left(\frac{C-D}{2}\right)$$ (C) $$2 \cos\left(\frac{C+D}{2}\right) \cdot \sin\left(\frac{C-D}{2}\right)$$ (D) $$-2 \cos\left(\frac{C+D}{2}\right) \cdot \cos\left(\frac{C-D}{2}\right)$$ Answer: - Option C **Explanation:** - By factorization formula $sin C - sin D = 2 cos \left(\frac{C+D}{2}\right) . sin \left(\frac{C-D}{2}\right)$ #### What is $\cos C - \cos D$ equal to? 43. (A) $$2 \sin\left(\frac{c+D}{2}\right) \cdot \cos\left(\frac{c-D}{2}\right)$$ (B) $-2 \sin\left(\frac{c+D}{2}\right) \cdot \sin\left(\frac{c-D}{2}\right)$ (C) $2 \cos\left(\frac{c+D}{2}\right) \cdot \sin\left(\frac{c-D}{2}\right)$ (D) $-2 \cos\left(\frac{c+D}{2}\right) \cdot \cos\left(\frac{c-D}{2}\right)$ (B) $$-2 \sin\left(\frac{C+D}{2}\right) \cdot \sin\left(\frac{C-D}{2}\right)$$ (C) $$2 \cos\left(\frac{C+D}{2}\right) \cdot \sin\left(\frac{C-D}{2}\right)$$ (D) $$-2 \cos\left(\frac{C+D}{2}\right) \cdot \cos\left(\frac{C-D}{2}\right)$$ Answer: - Option B **Explanation:** - By factorization formula $\cos C - \cos D = -2 \sin \left(\frac{C-D}{2} \right) \cdot \sin \left(\frac{C-D}{2} \right)$ #### What is cos C + cos D equal to? 44. (A) $$2 \sin\left(\frac{C+D}{2}\right) \cdot \cos\left(\frac{C-D}{2}\right)$$ (B) $-2 \sin\left(\frac{C+D}{2}\right) \cdot \sin\left(\frac{C-D}{2}\right)$ (C) $-2 \sin\left(\frac{C+D}{2}\right) \cdot \sin\left(\frac{C-D}{2}\right)$ (D) $2 \cos\left(\frac{C+D}{2}\right) \cdot \cos\left(\frac{C-D}{2}\right)$ (B) $$-2 \sin\left(\frac{C+D}{2}\right) \cdot \sin\left(\frac{C-D}{2}\right)$$ (C) $$-2 \sin\left(\frac{C+D}{2}\right) \cdot \sin\left(\frac{C-D}{2}\right)$$ (D) $$2 cos\left(\frac{C+D}{2}\right) . cos\left(\frac{C-D}{2}\right)$$ Answer: - Option D **Explanation:** - By factorization formula $\cos C + \cos D = 2 \cos \left(\frac{C+D}{2}\right) \cdot \cos \left(\frac{C-D}{2}\right)$ #### 2sin A. cos B can be expressed as 45. $$(A) \sin(A+B) + \sin(A-B)$$ (B) $$sin(A + B) - sin(A - B)$$ (C) $$cos(A + B) + cos(A - B)$$ (D) $$cos(A + B) - cos(A - B)$$ Answer: - Option A **Explanation:** - By defactorisation formula $2\sin A \cdot \cos B = \sin(A+B) + \sin(A-B)$ 2cos A. cos B can be expressed as 46. $$(A) sin(A + B) + sin(A - B)$$ (B) $$sin(A + B) - sin(A - B)$$ (C) $$cos(A + B) + cos(A - B)$$ (D) $$cos(A + B) - cos(A - B)$$ Answer: - Option C **Explanation:** - By defactorisation formula $2 \cos A \cos B = \cos(A + B) + \cos(A - B)$ $2 \sin 15^{0} \cos 5^{0}$ can be expressed as 47. (A) $$2 \sin 25^{\circ} \cos 5^{\circ}$$ (B) $$\sin 20^{\circ} \cos 5^{\circ}$$ (C) $$\sin 20^{0} \sin 10^{0}$$ (D) $$\sin 15^{0} \sin 25^{0}$$ Answer: - Option C **Explanation:** - By defactorisation formula $2\sin A \cdot \cos B = \sin(A+B) + \sin(A-B)$ Express $\cos \frac{\pi}{4} + \cos \frac{\pi}{6}$ into the product form 48. $$(A) \cos \frac{5\pi}{24} + \cos \frac{\pi}{24}$$ (B) $$2\cos\frac{5\pi}{24} + \cos\frac{\pi}{24}$$ (C) $$\sin \frac{5\pi}{24} + \sin \frac{\pi}{24}$$ (D) $$2\sin\frac{5\pi}{24} + \sin\frac{\pi}{24}s\frac{\pi}{6}$$ **Answer: -** Option B **Explanation:** - By factorization formula $\cos C + \cos D = 2 \cos \left(\frac{C+D}{2}\right) \cdot \cos \left(\frac{C-D}{2}\right)$ If $2 \sin 40 \cos 10 = \sin A + \sin B$ find A & B 49. (A) $$A = 30$$, $B = 50$ (B) $$A = 10$$, $B = 40$ (C) $$A = 40$$, $B = 10$ (D) $$A = 50$$, $B = 30$ Answer: - Option B **Explanation:** - By defactorisation formula $2\sin A \cdot \cos B = \sin(A+B) + \sin(A-B)$ Value for complementary relation $sin^{-1}x + cos^{-1}x = \dots$ is 50. (A)) $$\frac{\pi}{4}$$ (B) $$\frac{\pi}{2}$$ (D) -1 (C)1 Answer: - Option B **Explanation:** - By complementary relation $sin^{-1}x + cos^{-1}x = \frac{\pi}{2}$ $cos^{-1}(-x)$ is equal to? 51. (A) $$cos^{-1}x$$ (B) $$\pi - cos^{-1}x$$ $$(C) - cos^{-1}x$$ (D) $$\pi + cos^{-1}x$$ Answer: - Option B **Explanation:** - By negative relation $cos^{-1}(-x) = \pi - cos^{-1}x$. 52. Evaluate $tan^{-1}\left(\frac{1}{7}\right) + tan^{-1}\left(\frac{1}{13}\right) = \dots$ (A) $tan^{-1}\left(\frac{2}{9}\right)$ (B) $\cot^{-1}\left(\frac{2}{9}\right)$ (C) $tan^{-1}\left(\frac{9}{2}\right)$ (D) $tan^{-1}(1)$ **Answer: -** Option B **Explanation:** - By using $tan^{-1}(x) + tan^{-1}(y) = tan^{-1}\left(\frac{x+y}{1-x\cdot y}\right)$ 53. Find the principal value of $\cos\left(\frac{\pi}{2} - \sin^{-1}\frac{1}{2}\right)$ $(A)^{\frac{1}{2}}$ (B) 1 (C) 0 (D) $\frac{-1}{2}$ Answer: - Option A **Explanation:** - Use $\cos(\frac{\pi}{2} - \theta) = \sin\theta$ and $\sin\sin-1x = x$ Find the principal value of $tan^{-1} \infty - sin^{-1} \frac{1}{\sqrt{2}}$ (A) $\frac{\pi}{4}$ (B) $\frac{2\pi}{3}$ (C) π (D) $\frac{5\pi}{6}$ Answer: - Option A **Explanation:** - By using $sin^{-1}(\sin x) = x$ and $tan^{-1}(\tan x) = x$ Evaluate $cos^{-1}\left(\frac{3}{5}\right) + sin^{-1}\left(\frac{3}{5}\right)$ (A) $\frac{\pi}{3}$ 55. (B) $\frac{\pi}{2}$ (C) π $(D)\frac{5\pi}{6}$ Answer: - Option B **Explanation:** - We know $sin^{-1}x + cos^{-1}x = \frac{\pi}{2}$ ZEAL POLYTECHNIC **Prepared By** Mr. Jadhav G. R. Verified By Mr. Jadhav G. R. Module Coordinator **Re-Verified By** Mr. Dhavan P. P. Academic Coordinator Approved By Mr. Pathak S. R. First Year Coordinator ### ZEAL EDUCATION SOCIETY'S # ZEAL POLYTECHNIC, PUNE ### **Question Bank for Multiple Choice Questions** | Program: All Programs in Diploma Engineering | Program Code: - CE/CO/ME/EE/EJ | |--|--------------------------------| | Scheme: - I | Semester: - 1 | | Course: - Basic Mathematics | Course Code: - 22103 | | 03 – Straight Line | Marks:-12 | | |--|------------|--| | Content of Chapter:- | * | | | 3.1 Straight line and slope of straight line. | Treat will | | | a. Angle between two lines | | | | b.Condition of parallel and perpendicular lines . | | | | 3.2 Various forms of straight lines. | | | | a. Slope point form,two point form | | | | b.Two points intercept form. | | | | c.General form. | | | | 3.2 Perpendicular distance from a point on the line. | | | | 3.3 Perpendicular distance between two parallel line | | | | 1. | If the inclination of the line is 45°, then its slope is | | | |----|--|-------------------------------|--| | 1. | (A) 1 | | (B) 0 | | | (C) -1 | | (D) -2 | | | Answer: - Option A | A GENTLE | 1300 | | | Explanation:- Slop | be = $Tan(\theta)$ | | | 2. | The slope of y-axis is | | | | | (A) 1 | ZEAL POLY | (B) 0 | | | (C) 1 | | (D) Not Defined | | | Answer: - Option [|) | | | | Explanation:- The | angle made by Y-axis with the | positive direction of X-axis is 90° . | | 3. | The slope of x-axi | s is | | | | (A) 1 | | (B) 0 | | | (C) -1 | | (D) Not Defined | | 1 | The slope of the line $5x+3y+7=0$ is . | |---|--| | | | (A) $$\frac{5}{3}$$ (B) $$\frac{3}{5}$$ (C) $$-\frac{5}{3}$$ (D) $$-\frac{3}{5}$$ Answer: - Option C **Explanation:** - Slope of line ax+by+c=0 is , $m=-\frac{a}{b}$ Two lines are parallel to each other is their slopes are ... 5. (A) equal (B) not equal (C) opposite (D) imaginary Answer: - Option A Explanation:- parallel lines slopes are equals. The slope of line passing through origin and and the point (3, 4) is ... 6. (A) $$\frac{4}{3}$$ (B) $$-\frac{4}{3}$$ (C) $$\frac{3}{4}$$ (D) $$-\frac{3}{4}$$ Answer: - Option A **Explanation:** - By using formula , $m = \frac{y_2 - y_1}{x_2 - x_1}$ The y-intercept of line 5x-4y+7=0 is . 7. (A) $$\frac{5}{4}$$ (B) $$-\frac{5}{4}$$ (C) $$\frac{7}{4}$$ (D) $$-\frac{7}{4}$$ Answer: - Option c **Explanation:** - By using formula $m = -\frac{c}{B}$ If the slope of line passing through the points (-1, -4) and (2, k) is -1 then k=... 8. (A) 7 (C) -7 (B) 0 (D) -2 Answer: - Option C **Explanation:** - By using formula $m = \frac{y_2 - y_1}{x_2 - x_1}$ The lines 2x-y+1=0 and 8x-4y-5=0 are ... 9. (A) perpendicular (B) parallel (C) intersecting (D) none of these Answer: - Option B **Explanation:** - check m_1 . $m_2 = -1$ or $m_1 = m_2$ The equation of line passing through the point (4, 1) and making an angle of 45° with positive 10. direction of x-axis is ... (A) x-y-3=0(B) x+y-3=0(C) x-y+3=0(D) x+y+3=0**Answer: -** Option A **Explanation:-** Slope intercept form of line is $y - y_1 = m(x - x_1)$ The line 2x+3y-1=0 and 3x-2y-5=0 are 11. (A) perpendicular (B) parallel (C) intersecting (D) none of these Answer: - Option A **Explanation:** - check $m_1.m_2=-1$ or $m_1=m_2$ The equation of line having slope 3 and making intercept 4 on y-axis is ... 12. (A) 3x+y-3=0(B) 3x-y+4=0(D) 2x-y+3=0 (C) 2x+y-3=0**Answer: -** Option B **Explanation:-** Slope intercept form of line is y=mx+c The equation of line whose slope is $\frac{-3}{2}$ and passing through the point (1, 2) is ... 13. (B) 3x-2y+7=0(A) 3x+2y-7=0(D) 3x-2y-5=0(C) 3x-2y-7=0Answer: - Option A **Explanation:** - The equation of line in slope intercept form is $y - y_1 = m(x - x_1)$ The equation of line passing through the points (3, 4) and (5, 6) is 14. (A) x+y-1=0(C) x-y-1=0Answer: - Option B **Explanation:** - The equation line in two point form is $\frac{y-y_1}{y_1-y_2} = \frac{x-x_1}{x_1-x_2}$ The equation of line whose x-intercept is 10 and y-intercept is 3 is given by 15. (A) 3x+10y-30=0(B) 3x-10y-30=0 (C) 3x-10y+30=0 (D) 3x+10y+30=0 Answer: - Option A **Explanation:** - The equation line in two intercept form is $\frac{x}{a} + \frac{y}{b} = 1$ | 16. | The acute angle between the line y=5x+6 and y=x is | | | |-----|--|---|--| | | (A) $\tan^{-1}\left(\frac{2}{3}\right)$ | (B) $\tan^{-1}\left(\frac{3}{2}\right)$ | | | | (C) $tan^{-1}(1)$ | (D) $tan^{-1}(-1)$ | | Answer: - Option A **Explanation:** - If is the acute angle
between lines then $tan\theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$ The distance of point (1, -1) from the straight line 3x-4y+8=0 is 17. **Answer: -** Option A **Explanation:** - The distance of a point $P(x_1, y_1)$ from the line ax+by+c=0 is $\left|\frac{ax_1+by_1+c}{\sqrt{a^2+b^2}}\right|$ The distance between the two parallel lines 6x+8y+10=0 and 6x+8y-25=0 is 18. (A) $$\frac{5}{2}$$ (B) $\frac{7}{2}$ (C) $\frac{3}{2}$ Answer: - Option B **Explanation:** - Perpendicular distance between two parallel lines $ax + by + c_1 = 0$ and $ax + by + c_2 = 0$ is $\left|\frac{c_1 - c_2}{\sqrt{a^2 + b^2}}\right|$ Two lines are perpendicular to each other if product of their slope is equal to 19. Answer: - Option C **Explanation:** - If two lines are perpendicular then $\, m_1 . \, m_2 = -1 \,$ If inclination of the line is ' θ ', then its slope is given by ... (A) $$\sin\theta$$ (B) $\cos\theta$ (C) $$tan\theta$$ (D) $cot\theta$ Answer: - Option C **Explanation:** - Slope = $Tan(\theta)$ | 21. | Slope of general line ax+by+c=0 is given by | | |-----|---|--| | | $(A)\frac{a}{b}$ | $(B)-\frac{a}{b}$ | | | $(C)\frac{b}{a}$ | $(D) - \frac{b}{a}$ | | | Answer:Option B | a a | | | Explanation: - $slope = -\frac{Coefficient\ of\ x}{coefficient\ of\ y}$ | | | 22. | The slope of line whose inclination is 0° is | | | | (A) 0 | (B) 1 | | | (C) -1 | (D) none of these | | | Answer: - Option A | (D) Holle of these | | | Explanation: - Slope = $Tan(\theta)$ | | | 23. | The equation of 'x-axis' is | | | | (A) x=0 | (B) x=1 | | | (C) y=0 | (D) y=1 | | | Answer: - Option C | | | 24 | Explanation: - The y- coordinates on x-axis are zero. | O. | | 24. | The equation of 'y-axis' is (A) x=0 | (B) x=1 | | | (C) y=0 | (D) y=1 | | | Answer: - Option A | | | 25. | Explanation: - The X- coordinates on Y-axis are ze | | | 20. | The point of intersection of the lines 4x+3y=8 and x+y=1 is | | | | (A) (5, 4) | (B) (4, 5) | | | (C) (-5, 4)
Answer: - Option D | (D) (5, -4) | | | Explanation: - Solve these simultaneous equations | 1598 | | 26. | | | | | | other. If slope of line L_1 is $\frac{4}{5}$, then slope of line L_2 is | | | (A) $\frac{5}{4}$ | (B) $\frac{-5}{4}$ | | | (C) $\frac{4}{5}$ | (D) none of these | | | Answer: - Option B | | | | Explanation: - If two lines are perpendicular then | $m_1. m_2 = -1$ | | 27. | Let lines 'L ₁ ' and 'L ₂ ' are parallel to each other. I | | | | (A) 0 | (B) 1 | | | (C) -1 | (D) not defined | | | Answer: - Option B | | | | Explanation: - If the lines are parallel then slopes a | are equal. | | 28. | Equation of the line passing through point (-3 | · | (A) 0 (B) 1 (C) -1 (D) none of these Answer: - Option C **Explanation:** - The equation of line in slope intercept form is $y - y_1 = m(x - x_1)$ 29. The area of the triangle whose vertices are (3,1), (-1,3) and (-3,-2) (A) 12 sq. Unit (B) 28 sq. Unit (C) 11 sq. Unit (D) 21.5 sq. Unit Answer: - Option A **Explanation:** - we can find the area of the triangle by using formula $\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix}$ 30. Which of the following points are collinear (A) (2,3),(-1,0) and (4,5) (B) (3,1),(-1,3) and (-3,4) (C) (3,5),(3,-2) and (-3,16) (D) None of the above **Answer: -** Option A Explanation: - The condition of collinearity is $\begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}$ The value of x if the points (-5,7), (x,5) and (2,-7) are collinear (A) x=0 (B) x=-3 (C) x=-1 Answer: - Option B Explanation: - The condition of collinearity is $\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix} = 0$ The length of the perpendicular from the point (1,6) on the line x+y+8=0 $(A) \frac{15}{\sqrt{2}}$ (B) $\frac{15}{\sqrt{3}}$ (D) $\frac{15}{\sqrt{6}}$ (C) $\frac{15}{\sqrt{4}}$ Answer: - Option A **Explanation:** - The distance of a point $P(x_1,y_1)$ from the line ax+by+c=0 is $\left|\frac{ax_1+by_1+c}{\sqrt{a^2+b^2}}\right|$ **Prepared By** Mr. Jadhav G. R. **Verified By** Mr. Jadhav G. R. Module Coordinator Re-Verified By Mr. Dhavan P. P. Academic Coordinator **Approved By** Mr. Pathak S. R. First Year Coordinator # ZPOLY ### ZEAL EDUCATION SOCIETY'S ### **ZEAL POLYTECHNIC, PUNE** NARHE | PUNE -41 | INDIA | 04 - | - Mensuration | Marks:- 08 | |--|---|--| | 4.1 | tent of Chapter:-
Area of regular closed figures, Area of triangle
Volume of cuboids, cone, cylinder and sphere | e, square, parallelogram, rhombus, trapezium and circle. | | 1. | Area of the triangle when base is b and height is h is | | | | (A) Area = $\frac{1}{2} \times b \times h$ | (B) Area = $b \times h$ | | | (C) Area = b^2 | (D) Area = h^2 | | | Answer: - Option A | ATION | | | Explanation: - According to Formula: Area | $=\frac{1}{2} \times \text{base} \times \text{height}.$ | | 2. | Area of an equilateral triangle is | 2 16 kg | | | (A) Area = $b \times h$ | (B) Area = $\frac{\sqrt{3}}{4} \times (\text{side})^4$ | | | (C) Area = $(side)^2$ | (D) Area = $\frac{\sqrt{3}}{4} \times (\text{side})^2$ | | | Answer: - Option D | ■ /. //×/ | | | Explanation: - According to Formula: Area | $a = \frac{\sqrt{3}}{4} \times (\text{side})^2$ | | 3. | Area of rectangle is | X X | | | (A) Area = base \times height | (B) Area = length \times breadth | | | (C) Area = base \times length | (D) Area = length \times heigth | | | Answer: - Option B | | | Explanation: - According to Formula: Area of rectangle = length | | of rectangle = length \times breadth | | 4. | Area of square is | | | | (A) Area = $side^4$ | (B) Area = side \times side | | | (C) Area = $side^3$ | (D) Area = $side^5$ | **Explanation:** - According to Formula: Area = length \times breadth Answer: - Option B | 5. | Area of rhombus is | | |----|--------------------|--| |----|--------------------|--| (A) Area = $$\frac{1}{2} \times b \times h$$ (B) Area = $$side \times side$$ (C) Area = $$\frac{1}{2} \times d_1 \times d_2$$ (D) Area = $$b \times h$$ Answer: - Option C **Explanation:** - According to Formula: Area = $\frac{1}{2}$ × Product of diagonals, where d₁ & d₂ are diagonals. 6. Area of parallelogram when base is 'b' and height is 'h' is_ (A) Area = $$b \times h$$ (B) Area = $$\frac{1}{2} \times b \times h$$ (C) Area = $$\frac{\sqrt{3}}{4} \times (\text{side})^2$$ (D) Area = $$(side)^2$$ **Answer: -** Option A **Explanation:** - According to Formula: Area = base \times height 7. If 'r' is the radius of circle, then area of circle is (A) Area = $$2\pi r$$ (B) Area = $$\frac{d}{2}$$, where 'd' is the diameter (C) Area $$= 2r$$ (D) Area = $$\pi r^2$$ Answer: - Option D **Explanation:** - According to Formula: Area = $\pi \times (radius)^2$ 8. Area of Trapezium is____ (A) Area = $$\frac{1}{2}$$ × (sum of parallel sides) × height (B) Area = sum of parallel sides) × height (B) Area = sum of parallel sides) $$\times$$ heigh (C) Area = $$\frac{1}{2}$$ × (sum of parallel sides) (C) Area = $$\frac{1}{2}$$ × (sum of parallel sides) (D) Area = $\frac{1}{2}$ × (sum of parallel sides) + height Answer: - Option A **Explanation:** - According to Formula: Area = $\frac{1}{2}$ × (sum of parallel sides) × height 9. If 'R' and 'r' be radius of outer and inner circles, then area of annulus (ring) is_ (A) Area = $$\pi r^2 - \pi R^2$$ (A) Area = $$\pi r^2 - \pi R^2$$ (B) Area = $\pi R^2 - \pi r^2$ (C) Area = $\pi r^2 = \pi R^2$ (D) Area = $\pi r^2 + \pi R^2$ (C) Area = $$\pi r^2 = \pi R^2$$ (D) Area = $$\pi r^2 + \pi R^2$$ Answer: - Option B **Explanation:** - According to Formula: Area = Area of outer circle — Area of inner circle The area of rectangle with one side 8 cm is 172 cm². Find length of the other side (A) 26 cm (B) 30 cm (C) 21.5 cm (D) 72 cm Answer: - Option C **Explanation:** - According to Formula: Area = length \times breadth | | The area of monibus whose diagonals are of le | igui rocin and 0.2 cm. | |-----|---|---| | | (A) 26 sq.cm | (B) 41 sq. cm | | | (C) 210 sq. cm | (D) 82 sq.cm | | | Answer: - Option B | | | | Explanation: - According to Formula: Area = $\frac{1}{2}$ × | $d_1 \times d_2$ | | 12. | The area of the circle whose radius is 7.7 cm. | | | | (A) 126.5 cm ² | (B) 130.4 cm ² | | | (C) 121.5 cm ² | (D) 186.34 cm ² | | | Answer: - Option D | | | | Explanation: - According to Formula: Area = πr^2 | · · | | 13. | If the area of circle is 120 cm^2 , then radius of a | circle is | | | (A) r = 6.18 cm | (B) r = 8.18 cm | | | (C) r = 9.18 cm | (D) r = 4.18 cm | | | Answer: - Option A | | | | Explanation: - According to Formula: Area = πr^2 | | | 14. | A circle has a diameter of 14cm. Then its area is | | | | (A) 164 sq.cm | (B) 174 sq.cm | | | (C) 154 sq.cm | (D) 184 sq.cm | | | Answer: - Option D | | | | Explanation: - According to Formula: Area = πr^2 | 1808 | | 15. | The area of a trapezium whose parallel sides ar between the sides is 4cm is | e 10 cm and 8cm where the perpendicular distance | | | (A) A = 64 sq.cm
(C) A = 54 sq.cm | (B) $A = 74 \text{ sq.cm}$ | | | (C) A = 54 sq.cm | (D) A = 36 sq.cm | | | Answer: - Option D | | | | Explanation: - According to Formula: Area = $\frac{1}{2}$ × | (sum of parallel sides) \times height | | 16. | A wall is of the form of a trapezium with height cost of painting the wall if it has rate of painting | 4 m and parallel sides being 3m and 5m then the as Rs. 25 per sq. m | | | (A) 220 Rs | (B) 280 Rs | | | (C)
240 Rs | (D) 260 Rs. | | | Answer: - Option C | | | | Explanation: - According to Formula: Area = $\frac{1}{2}$ × | (sum of parallel sides) \times height | | 17. The area of a trapezoid with base of 10cms and 14cms and height of 5cms | | 14cms and height of 5cms. | | |---|--|---|--| | | (A) 60 sq.cm | (B) 70 sq.cm | | | | (C) 50 sq.cm | (D) 30 sq.cm | | | | Answer: - Option A | | | | | Explanation: - According to Formula: Area = $\frac{1}{2}$ × | (sum of parallel sides) \times height | | | 18. | The area of trapezoid is 24 sq.cm and the bases are 9cms and 7cms then the height is | | | | | (A) h = 4cm | (B) h = 3cm | | | | (C) h = 5cm | (D) h = 6cm | | | | Answer: - Option B | | | | | Explanation: - According to Formula: Area = $\frac{1}{2}$ × | (sum of parallel sides) \times height | | | 19. | The area of a rectangular garden is $3000m^2$ Its the garden is | sides are in the ratio 6:5. Then the perimeter of | | | | (A) 220 m | (B) 240 m | | | | (C) 260 m | (D) 280 m | | | | Answer: - Option A | | | | | Explanation: - According to Formula: Area = length \times breadth | | | | 20. | The circumference of circle whose area is 38.5 $ m cm^2$. | | | | | (A) 22 cm | (B) 24 cm | | | | (C) 26 cm | (D) 28cm | | | | Answer: - Option A | 1000 | | | | Explanation: - According to Formula: Area = πr^2 | 2 , Circumference = 2 πr | | | 21. | Find the area of triangular plot whose base is 17.2 cm and height 19.60 cm. | | | | | (A) 126.5 cm ² | (B) 130.4 cm ² | | | | (C) 168.56 cm ² | (D) 186.34 cm ² | | | | Answer: - Option C | | | | | Explanation: - According to Formula: Area = base \times height. | | | | 22. | The of a right-angled triangle is 8m and hypotenuse is 100m. Find its area. | | | | | (A) 48 m^2 | (B) 24 m ² | | | | (C) 21 m ² | (D) 34 m ² | | | | Answer: - Option B | | | | | Explanation: - According to Formula: Area = base \times height | | | | 23. | A park is in the form of a right-angled triangle with hypotenuse 13m. If one of the side is 12 m, find the cost of leveling at the rate of Rs. 10 per sq. m. | | | |-----|---|---|--| | | (A) Rs. 30 | (B) Rs.60 | | | | (C) Rs. 250 | (D) Rs. 300 | | | | Answer: - Option D | | | | | Explanation: - According to Formula: Area = b | ase × height | | | 24. | Find the area of triangle whose sides are 4cm | , 6cm and 8cm. | | | | (A) 135 cm ² | (B) 130.4 cm^2 | | | | (C) 11.5 cm ² | (D) 11.62 cm ² | | | | Answer: - Option D | | | | | Explanation: - Using Heron's to Formula: Area | $= \sqrt{s(s-a)(s-b)(s-c)}$ | | | 25. | Find the area of triangle if a = 51 cm, b = 70cm | and $\angle C = 41^{\circ}$. | | | | (A) 1117.51 cm ² | (B) 1304.4 cm ² | | | | (C) 1171.07 cm ² | (D) 1816.34 cm ² | | | | Answer: - Option C | | | | | Explanation: - According to Formula: Area = $\frac{1}{2} \times a.b \times sin C$ | | | | 26. | The area of an Equilateral triangle is $\sqrt{3}$ cm². Find its height. | | | | | (A) 18 cm | (B) $9\sqrt{3}$ cm | | | | (C) $3\sqrt{3}$ cm | (D) $\sqrt{3}$ cm | | | | Answer: - Option B | -1300 | | | 27. | Explanation: - According to Formula: Altitude of equilateral triangle $=\frac{\sqrt{3}}{2} \times \text{side}$
7. The adjacent sides of a parallelogram are 10 cm and 8 cm, one of the diagonal is 6cm. Find area of the parallelogram. | | | | | (A) 12 cm ² | (B) 24 cm ² | | | | (C) 21 cm ² | (D) 48 cm^2 | | | | Answer: - Option D | | | | | Explanation: - According to Formula: Area = $\sqrt{s(s-a)(s-b)(s-c)}$ | | | | 28. | inside. Find the area of the path. | has gravel path 10 meters wide all around it on the | | | | (A) 3600 m ² | (B) 1304 m^2 | | | | (C) 1215 m ² Answer: - Option A | (D) 1864 m ² | | | | Answer: - Option A | actionals — longth V huse left | | | | Explanation: - According to Formula: Area of rectangle = length \times breadth | | | | 29. | The side of square shaped field is 1.20 per m ² . | s 170m long. Find the cost of leveling the field at the rate of Rs. | |--|---|---| | | (A) Rs. 28900 | (B) Rs. 4680 | | | (C) Rs. 34680 | (D) Rs. 18634 | | | Answer: - Option C | | | | Explanation: - According to Formula | a: Area = $(side)^2$ | | 30. | <u> </u> | f land, one of whose side is 25 meters, a man want to buy a e and of the same area as the square plot. Determine the length | | | (A) $L = 12$ meters | (B) $L = 12.5$ meters | | | (C) $L = 27$ meters | (D) $L = 11.5$ meters | | | Answer: - Option B | | | | Explanation: - According to Formula | a: Area of rectangle = length \times breadth.
Area of square = $(\text{side})^2$ | | 31. | Find the area of rhombus whose of | liagonals are 6cm and 9cm. | | | (A) $A = 54 \text{ cm}^2$ | (B) $A = 45 \text{ cm}^2$ | | | (C) $A = 27 \text{ cm}^2$ | (D) $A = 15 \text{ cm}^2$ | | | Answer: - Option C | | | | Explanation: - According to Formula | a: Area = $\frac{1}{2} \times d_1 \times d_2$ | | 32. Area of rhombus is 336cm² and one diagonal is 14cm. Find the length of side. | | ne diagonal is 14cm. Find the length of side. | | | (A) side $= 25$ cm | (B) side $= 48$ cm | | | (C) side = 52cm | (D) side = 62 cm | | | Answer: - Option A | | | | Explanation: - According to Formula | a: Side of rhombus $=\frac{1}{2}\sqrt{{d_1}^2+{d_2}^2}$ | | 33. | Find the area of rhombus if its sid | e is 13cm and one of its diagonal is 10cm. | | | (A) Area = 12 cm^2
(C) Area = 270 cm^2
Answer: - Option D | (B) Area = 240 cm^2
(D) Area = 120 cm^2 | | | Explanation: - According to Formula | a: Area = $\frac{1}{2} \times d_1 \times d_2$ and Side of rhombus = $\frac{1}{2} \sqrt{{d_1}^2 + {d_2}^2}$ | | 34. | | zium measures 50m and 20m respectively and altitude is 50m. | | | (A) Area = 70 m^2 | (B) Area = 1240 m^2 | | | (C) Area = 1750 m^2 | (D) Area = 1120 m^2 | Answer: - Option D | | il sulli di two paraller sides di a trapeziulii is 232 | com and its area is 320 cm-, i mu its annuae, | |-----|--|--| | | (A) $h = 12 \text{ cm}$ | (B) $h = 8 \text{ cm}$ | | | (C) $h = 2 cm$ | (D) $h = 16 \text{ cm}$ | | | Answer: - Option B | | | | Explanation: - According to Formula: Area = $\frac{1}{2}$ × | (sum of parallel sides) \times height | | 36. | The two parallel sides of a trapezium measure are equal each being 17m. Find its area. | s 58m and 42m respectively. The other two Sides | | | (A) Area = 750 m^2 | (B) Area = 240 m^2 | | | (C) Area = 270 m^2 | (D) Area = 120 m^2 | | | Answer: - Option A | | | | Explanation: - According to Formula: Area = $\frac{1}{2}$ × theorem. | (sum of parallel sides) \times height and Pythagoras | | 37. | Volume of Cuboid is | | | | (A) Volume = $l \times b \times h$ cubic units. | (B) Volume = $l \times b$ cubic units. | | | (C) Volume = $l \times h$ cubic units. | (D) Volume = $b \times h$ cubic units. | | | Answer: - Option A | | | | Explanation: - According to Formula: Volume $= l$ | \times $b \times h$ cubic units. | | 38. | Let 'l', 'b' and 'h' are the length, breadth and hei | ght respectively, then total surface area is | | | (A) Surface Area = $2 (lb + bh)$ | (B) Surface Area = $2 (lh + bh)$ | | | (C) Surface Area = $2 (lb + lh)$ | (D) Surface Area = $2 (lb + bh + lh)$ | | | Answer: - Option D | 139R | | | Explanation: - According to Formula: Surface Area | of cuboid = $2 (lb + bh + lh)$ | | 39. | Let 'l', 'b' and 'h' are the length, breadth and hei | ght respectively, then the diagonal of cuboid is | | | (A) Diagonal = $\sqrt{l^2 + b^2}$ | (B) Diagonal = $l^2 + b^2 + h^2$ | | | (C) Diagonal = $\sqrt{l^2 + b^2 + h^2}$ | (D) Diagonal = $\sqrt{l+b+h}$ | | | Answer: - Option C | | | 40. | Explanation: - According to Formula: Diagonal of o | $cuboid = \sqrt{l^2 + b^2 + h^2}$ | | 40. | Volume of cube is | | | | (A) Volume = $(side)^3$. | (B) Volume = $(side)^2$. | | | (C) Volume = side | (D) Volume = length \times breadth | | | Answer: - Option A | | | | Explanation: - According to Formula: Volume = (| side) ³ | | | | | | 41. | Surface area of cube is | | |-----|---|---| | | (A) Surface Area = $(side)^2$ | (B) Surface Area = 2 (side)^2 | | | (C) Surface Area = 6 (side)^2 | (D) Surface Area = 6 (side) | | | Answer: - Option C | | | | Explanation: - According to Formula: Surface Area | $a ext{ of cube} = 6 ext{ (side)}^2$ | | 42. | Diagonal of cube is | | | | (A) Diagonal of cube = $\sqrt{3}$ (side) ² | (B) Diagonal of cube = $\sqrt{3}$ (side) | | | (C) Diagonal of cube = $\sqrt{3}$ (side) ³ | (D) Diagonal of cube = $\sqrt{6}$ (side) ² | | | Answer: - Option B | | | | Explanation: - According to Formula: Diagonal of o | cube = $\sqrt{3}$ (side) | | 43. | If 'r' is the radius of cylinder and 'h' is the heigh | t of cylinder, then volume is | | | (A) Volume = $\pi r^2
h$ | (B) Volume = $2\pi rh$ | | | (C) Volume $= \pi r^2$ | (D) Volume $= r^2h$ | | | Answer: - Option A | | | | Explanation: - According to Formula: Volume of cy | $dinder = \pi r^2 h$ | | 44. | If 'r' is the radius of cylinder and 'h' is the heigh | t of cylinder, then curved surface area is | | | (A) Curved Surface Area $=\pi r^2 h$ | (B) Curved Surface Area $= 2\pi rh$ | | | (C) Curved Surface Area $= \pi r^2$ | (D) Curved Surface Area $= r^2h$ | | | Answer: - Option B | | | | Explanation: - According to Formula: Curved Surfa | ace Area of cylinder $=2\pi rh$ | | 45. | If 'r' is the radius of cylinder and 'h' is the heigh | t of cylinder, then total surface area is | | | (A) Total Surface Area = $2\pi r(r + h)$ | (B) Total Surface Area $= \pi r h$ | | | (C) Total Surface Area = $2\pi(r + h)$ | (C) Total Surface Area = $2r(r + h)$ | | | Answer: - Option A | | | 46. | Explanation: - According to Formula: Total Surface If 'r', 'h' and 'l' is the radius, height and slar volume is | e Area of cylinder $=2\pi r(r+h)$ at height of right circular cone respectively, then | | | (A) Volume = $\pi r^2 h$ | (B) Volume = $2\pi rhl$ | | | (C) Volume $=\frac{1}{3}\pi r^2 h$ | (D) Volume = r^2hI | | | Answer: - Option C | | | | Explanation: - According to Formula: Volume of co | one = $\frac{1}{3}\pi r^2 h$ | | 47. | If 'r', 'h' and 'l' is the radius, height an curved surface area is | d slant height of right circular cone respectively, then | |-----|---|--| | | (A) Curved Surface Area = $\pi r^2 l$ | (B) Curved Surface Area = $2\pi rl$ | | | (C) Curved Surface Area = πr^2 | (D) Curved Surface Area = πrl | | | Answer: - Option D | | | | Explanation: - According to Formula: Curve | d Surface Area of cone $=\pi rl$ | | 48. | If 'r', 'h' and 'l' is the radius, height and sl surface area is | ant height of right circular cone respectively, then Total | | | (A) Total Surface Area = $\pi r(r + h)$ | (B) Total Surface Area = $\pi r l$ | | | (C) Total Surface Area = $2\pi(r + l)$ | (D) Total Surface Area = $\pi r(r + l)$ | | | Answer: - Option D | | | | Explanation: - According to Formula: Total S | Surface Area of cone = $\pi r(r + l)$ | | 49. | If 'r', 'h' and 'l' is the radius, height and sl height $l=$ | ant height of right circular cone respectively, then slant | | | (A) Slant Height (I) = $\sqrt{h^2 + l^2}$ | (B) Slant Height (I) = $\sqrt{h^2 + r^2}$ | | | (C) Slant Height (I) = $\sqrt{h^2 - l^2}$ | (D) Slant Height (I) = $\sqrt{h^2 - r^2}$ | | | Answer: - Option B | | | | Explanation: - According to Formula: Slant | Height (I) = $\sqrt{h^2 + r^2}$ | | 50. | Volume of Sphere is | TNE | | | (A) Volume $= \frac{4}{3}\pi r^3$ | (B) Volume = $2\pi r$ | | | (C) Volume $=\frac{4}{3}\pi r^2$ | (D) Volume = πr^2 | | | Answer: - Option A | 1-1396 | | | Explanation: - According to Formula: Volum | be of sphere $=\frac{4}{3}\pi r^3$ | | 51. | Surface Area of Sphere is | | | | (A) Surface Area = πr^2 | (B) Surface Area = $2\pi r$ | | | (C) Surface Area = $4 \pi r^2$ | (D) Surface Area = $\frac{4}{3}\pi r^2$ | | | Answer: - Option C | 5 | | | Explanation: - According to Formula: Surface | be Area of Sphere = $4 \pi r^2$ | | 52. | Volume of Hemisphere is | | | | (A) Volume = $\frac{4}{3}\pi r^3$ | (B) Volume = $2\pi r$ | | | (C) Volume = $\frac{4}{3}\pi r^2$ | (D) Volume = $\frac{2}{3}\pi r^3$ | | | Answer: - Option D | • | | | Explanation: - According to Formula: Volum | the of Hemisphere = $\frac{2}{3}\pi r^3$ | | 53. | Curved Surface Area of Hemisphere is | | |-----|---|--| | | (A) Curved Surface Area = πr^2 | (B) Curved Surface Area = πr^2 | | | (C) Curved Surface Area = $2 \pi r^2$ | (D) Curved Surface Area = $4 \pi r^2$ | | | Answer: - Option B | | | | Explanation: - According to Formula: Curved | d Surface Area of Sphere = $2 \pi r^2$ | - 54. Total Surface Area of Hemisphere is_____. - (A) Total Surface Area = πr^2 (A) Total Surface Area = r^2 - (C) Total Surface Area = $2 \pi r^2$ - (D) Total Surface Area = $3 \pi r^2$ Answer: - Option D **Explanation:** - According to Formula: Total Surface Area $=3~\pi~r^2$ - 55. Find the Volume of Cuboid if the length, breadth and height are 25cm, 51cm, and 52cm respectively. - (A) 66300 cm³ (B) 6300 cm³ (C) 36300 cm³ (D) 65300 cm³ Answer: - Option A **Explanation:** - According to Formula: Volume = $l \times b \times h$ ESTD-1996 **Prepared By** Mr. Jadhav G. R. Verified By Mr. Jadhav G. R. Module Coordinator **Re-Verified By** Mr. Dhavan P. P. Academic Coordinator Approved By Mr. Pathak S. R. First Year Coordinator # ZPOLY #### ZEAL EDUCATION SOCIETY'S ### ZEAL POLYTECHNIC, PUNE NARHE | PUNE -41 | INDIA | 05 – Statistics | Marks: - 14 | |-----------------|-------------| |-----------------|-------------| ### Content of Chapter:- - 5.1 Range, coefficient of range of discrete and grouped data. - 5.2 Mean deviation and standard deviation from mean of grouped and ungrouped data, weighted means. - 5.3 Variance and coefficient of variance. - 5.4 Comparison of two sets of observation. - 1. The distribution 3, 5, 7, 8, 3, 9, 5, 7, 10 is_ - (A) Grouped data (B) Ungrouped data (C) Raw data (D) None of these Answer: - Option C Explanation: - According to definition of Raw data. 2. The following data is -----type | Marks | 3 - 5 | 5 - 7 | 7 - 9 | 9 - 11 | 11 - 13 | |-----------------|-------|-------|-------|--------|---------| | No. of students | 4 | 3 | 10 | 12 | V/7 | (A) Grouped data (B) Ungrouped data (C) Raw data (D) None of these **Answer: -** Option A **Explanation:** - According to definition of Grouped data. 3. The following data is ----type. | Wt. of items in gms | 50 | 100 | 150 | 200 | 250 | |---------------------|----|-----|-----|-----|-----| | No. of items | 4 | 10 | 15 | 20 | 7 | (A) Grouped data (B) Ungrouped data (C) Raw data (D) None of these **Answer: -** Option B **Explanation:** - According to definition of Ungrouped data. - The 5 is the frequency of _____observation from the data 1.2, 1.21,1.5,1.2, 1.5, 1.4, 1.41,1.21, 1.5, 1.2, 1.8, 1.7, 1.8, 1.81, 1.4, 1.5, 1.2, 1.6, 1.7, 1.5, 1.8, 1.31,1.2, 1.2. - (A) 1.8 (B) 1.2 (C) 1.5 (D) 1.21 Answer: - Option C **Explanation:** - Frequency means number of occurrence (or number of repetitions) of observation in the given data. Here 1.5 is repeated 5 times, so 5 is the frequency of 1.5. | ٥. | The correct formula to find class-mark for group | ed irequeitcy distribution is | |-----|--|--| | | (A) $\frac{\text{Upper limit-Lower limit}}{2}$ | (B) $\frac{\text{Lower limit-Upper limit}}{2}$ | | | (C) $\frac{\text{Upper limit} + \text{Lower limit}}{2}$ | (D) None of these | | | Answer: - Option C | | | | Explanation: - Class marks is the average of upper | and lower limit of the class interval. | | 6. | The correct formula for class length of grouped | frequency distribution is | | | (A) U. L + L. L | $(B) \frac{L.L-U.L}{2}$ | | | (C) $\frac{\text{L.L+U.L}}{2}$ | (D) U. L — L. L | | | Answer: - Option D | | | | Explanation: - According to definition of class length | h. | | 7. | is the relative measure. | | | | (A) Variance | (B) Standard deviation | | | (C) Range | (D) Mean Deviation | | | Answer: - Option A | | | | Explanation: - According to definition of Variance. | | | 8. | is the absolute measure. | | | | (A) Variance | (B) Standard deviation | | | (C) Range | (D) Mean Deviation | | | Answer: - Option B | | | | Explanation: - According to definition of Standard d | leviation. | | 9. | Range of the distribution is given by | | | | (A) $L - S$
(C) $\frac{L + S}{L - S}$ | (B) $L + S$ | | | $(C)\frac{L+S}{L-S}$ | $(D)\frac{L-S}{L+S}$ | | | Answer: - Option A | | | | Explanation: - According to definition of range. | | | 10. | Coefficient of Range = | | | | $(A) \frac{\text{Range}}{L - S}$ | $(B) \frac{L+S}{L-S}$ | | | (C) $L + S$ | $(D) \frac{L-S}{L+S}$ | | | Answer: - Option D | | | | Explanation: - According to formula. | | | 11. | $\frac{\text{Range}}{\text{L}-\text{S}} = \underline{\hspace{1cm}}$ | | |-----|---|---| | | (A) 1 | (B) Range | | | (C) -1 | (D) 0 | | | Answer: - Option A | | | | Explanation: - According to formula. | | | 12. | Coefficient of Range = | | | | $(A)\frac{L+S}{L-S}$ | $(B)\frac{Range}{L-S}$ | | | $(C) \frac{Range}{Range + 2s}$ | $(D) \frac{Range}{Range + s}$ | | | Answer: - Option C | nange i b | | | Explanation: - According to formula. | | | 13. | The Range of 10, 5, 12, 2, 15, 20, 8, 10 is | OA- " | | | (A) 18 | (B) 22 | | | (C) 20 | (D) 2 | | | Answer: - Option A | | | | Explanation: - According to formula $L - S$ | | | 14. | The Range and coefficient of Range of the data | 120, 100, 130, 50, 150 are respectively. | | | (A) 5.5, 50 | (B) 50, 0.5 | | | (C) 2, 100 | (D) 100, 0.5 | | | Answer: - Option D | 190 | | | Explanation: - According to formula Range = L - | S and Coefficient of Range = $\frac{L-S}{L+S}$ | | 15. | The class marks of a certain frequency distribut | ion are 15, 25, 35, 45, 55, 65 then the range = | | | (A) 25 | (B) 50 | | | (C) 55 | (D) 65 | | | Answer: - Option B | | | | Explanation: - According to formula Range L - S. | | | 16. | The Range and coefficient of Range of 5, 7, 9, 13 | 3, 11, 5, 3 are | | | (A) 5, 11 | (B) 10, 0.61 | | | (C) 10, 0.625 | (D) 5, 0.5 | | | Answer: - Option C | | | | Explanation: - According to formula Range = L - | S and Coefficient of Range = $\frac{L-S}{L+S}$ | | 17. | The coefficient of | of Range | of 50, 90, 12 | 20, 40, 180 | , 200, 80 is | s | | | | |-----
---|--|---|--|---|--|---------------------------|---------------------|----| | | (A) 0.60 | _ | | | (B) 0.69 | | | | | | | (C) 0.65 | | | | (D) 0.67 | 7 | | | | | | Answer: - Option | D | | | | | | | | | | Explanation: - A | ccording to | o formula Co | efficient of | f Range = | $\frac{L-S}{L+S}$ | | | | | 18. | The Range of the | | | | | ГТЗ | | | | | | x_i | 3 | 8 | 13 | 18 | 3 | 23 | 28 | 33 | | | f_i | 1 | 4 | 5 | (D) 26 | | 2 | 3 | 10 | | | (A) 30 | | | | (B) 36 | | | | | | | (C) 11 | | | | (D) 9 | | | | | | | Answer: - Option | Α | | AT | 10 | | | | | | 40 | Explanation: - A The Range and o | | | | | ribution a | ro | | | | 19. | Marks | 5 | 15 | 25 | 35 | 45 | 55 | | | | | No. of students | | 20 | 30 | 40 | 50 | 60 | | | | | (A) 50, 0.7142 | 10 | 4 | | (B) 50, (| 0.833 | 1 | | | | | (C) 55, 0.833 | | | | (D) 55, (| 7142 | | | | | | | | | | (D) 55, (| J. 1 1 TZ | | | | | | Answer: - Option | В | | | (B) 33, (| J.1 142 | | | | | | • | | o formula Ra | ange = L - | - | | of Range | $=\frac{L-S}{L+S}$ | | | 20. | Answer: - Option Explanation: - A The Range and o | ccording to | | | - S and C | coefficient | | $=\frac{L-S}{L+S}$ | | | 20. | Explanation: - A | ccording to | t of Range | | - S and C | coefficient | | $=\frac{L-S}{L+S}$ | | | 20. | Explanation: - A | ccording to | t of Range | of the follo | - S and C | coefficient of a | re | $=\frac{L-S}{L+S}$ | | | 20. | Explanation: - A The Range and o | ccording to | t of Range | of the folio | - S and Cowing dist | ribution a 40 - 50 30 | re | $=\frac{L-S}{L+S}$ | | | 20. |
Explanation: - A The Range and o Marks No. of students | ccording to | t of Range | of the folio | - S and Cowing dist 30 - 40 25 (B) 15, (| ribution a 40 - 50 30 | re
50 - 60
25 | $= \frac{L-S}{L+S}$ | | | 20. | Explanation: - And The Range and of Marks No. of students (A) 60, 0 | coording to
coefficien
0 - 10
10 | t of Range | of the folio | - S and Cowing dist 30 - 40 25 (B) 15, (| coefficient of ribution a 40 - 50 30 0.4285 | re
50 - 60
25 | $=\frac{L-S}{L+S}$ | | | 20. | Explanation: - And The Range and of Marks Mo. of students (A) 60, 0 (C) 60, 1 Answer: - Option | coefficien 0 - 10 10 | 10 - 20
20 | of the follo | - S and Coving dist 30 - 40 25 (B) 15, (C) Non- | ribution a 40 - 50 30 0.4285 e of these | re | | | | 20. | Explanation: - And The Range and of Marks No. of students (A) 60, 0 (C) 60, 1 | coording to | t of Range of 10 - 20 20 20 approximately a formula Ra | of the following the following states and the following states and the following states are states are states and the following states are | - S and Coving dist 30 - 40 25 (B) 15, (C) Non- | ribution a 40 - 50 30 0.4285 e of these | re | | | | | Explanation: - And The Range and of Marks No. of students (A) 60, 0 (C) 60, 1 Answer: - Option Explanation: - And The Range of the Max Temp | coording to coefficien 0 - 10 10 Cocording to coording coordinate coord | t of Range of 10 - 20 20 20 construing formula Range distribution 27 - 28 2 | of the following the following series angle = L - on is 9 - 30 31 | - S and Coving dist 30 - 40 25 (B) 15, (C) Non S and Coving dist | coefficient of these coefficient of these coefficient of the second co | 50 - 60
25
of Range | | | | | Explanation: - And The Range and of Marks No. of students (A) 60, 0 (C) 60, 1 Answer: - Option Explanation: - And The Range of the Max Temp No. of Days | coording to coefficien 0 - 10 10 C ccording to cefollowing | t of Range (10 - 20 20) of formula Range (10 distribution) | of the following the following series angle = L - on is 9 - 30 31 | - S and Coving dist 30 - 40 25 (B) 15, (C) Non S and Coving dist | coefficient of the second coefficient of these coefficient of the second seco | 50 - 60
25
of Range | | | | | Explanation: - And The Range and of Marks No. of students (A) 60, 0 (C) 60, 1 Answer: - Option Explanation: - And The Range of the Max Temp No. of Days (A) 12 | coording to coefficien 0 - 10 10 Cocording to coording coordinate coord | t of Range of 10 - 20 20 20 construing formula Range distribution 27 - 28 2 | of the following the following series angle = L - on is 9 - 30 31 | - S and Coving dist 30 - 40 25 (B) 15, (C) Non S and Coving dist - dis | coefficient of these coefficient of these coefficient of the second co | 50 - 60
25
of Range | | | | | Explanation: - And The Range and of Marks No. of students (A) 60, 0 (C) 60, 1 Answer: - Option Explanation: - And The Range of the Max Temp No. of Days | coording to coefficien 0 - 10 10 Cocording to coording coordinate coord | t of Range of 10 - 20 20 20 construing formula Range distribution 27 - 28 2 | of the following the following series angle = L - on is 9 - 30 31 | - S and Coving dist 30 - 40 25 (B) 15, (C) Non S and Coving dist | coefficient of these coefficient of these coefficient of the second co | 50 - 60
25
of Range | | | | | Explanation: - And The Range and of Marks No. of students (A) 60, 0 (C) 60, 1 Answer: - Option Explanation: - And The Range of the Max Temp No. of Days (A) 12 | C ccording to coefficien 0 - 10 10 C ccording to ce followin 25 - 26 2 | t of Range of 10 - 20 20 20 construing formula Range distribution 27 - 28 2 | of the following the following series angle = L - on is 9 - 30 31 | - S and Coving dist 30 - 40 25 (B) 15, (C) Non S and Coving dist - dis | coefficient of these coefficient of these coefficient of the second co | 50 - 60
25
of Range | | | | | Explanation: - And The Range and of Marks No. of students (A) 60, 0 (C) 60, 1 Answer: - Option Explanation: - And The Range of the Max Temp No. of Days (A) 12 (C) 13 | C ccording to C ccording to E following 25 - 26 2 | t of Range of 10 - 20 20 20 20 20 20 20 20 20 20 20 20 20 | of the following in the following is the following is the following in the following is the following in the following is | - S and C owing dist 30 - 40 25 (B) 15, (C) Non - S and C 1 - 32 33 10 (B) 11 (D) 10 | coefficient of these coefficient of these coefficient of the second co | 50 - 60
25
of Range | | | | Marks | 10 - 19 | 20 - 29 | 30 - 39 | 40 - 49 | 50 - 59 | 60 - 69 | | |-------------------------------|--------------|-----------|--|---------------------------------|--------------|--------------------------|-------------------| | No. of students | 6 | 10 | 16 | 14 | 8 | 4 | | | A) 59, 0.7468 | | | | (B) 60 | , 0.76 | | | | C) 58, 0.76 | | | | (D) 59 | 9, 0.716 | | | | Answer: - Option E | 3 | | | | | | | | Explanation: - Acc | ording to f | ormula Ra | ange = L | - S and | Coefficient | of Range = $\frac{I}{I}$ | $\frac{z-S}{z+S}$ | | n two factories A | | gaged in | the same | industria | I area, the | average wee | kly wages an | | D. are as follows.
Facto | | | Ave | rage wag |
es | Stand | lard Deviation | | Α | | | | 34.5 | | | 5.0 | | В | | | | 28.5 | | | 4.5 | | Which factory A A) Factory A | or B is mo | ore consi | stent? | (R) Fo | ctory B | | | | A) Faciory A | | | | 1.9 | 1.0 | | | | C) Both A and B | | | | (D) N | one of thes | е | | | nswer: - Option A | 1/4 | | | | | | | | Explanation: - Acc | cording to f | ormula c. | $v_{\cdot} = \frac{\sigma}{\overline{X}} \times$ | 100, c.v | of A < c. \ | v. of B. | | | Find standard dev | riation of t | he follow | ing data | 6, 7, 10, 1 | 2, 13, 4, 8, | 12. | | | (A) 4.04 | | (B) 3.04 | | | | | | | (C) 5.04 (D) 6.04 | | | 04 | | | | | | Answer: - Option E | 3 | | ZU! | | | | | | Explanation: - Acc | ording to f | ormula S. | $D. = \frac{\sqrt{(x)}}{x}$ | $\frac{1}{n} - \overline{X})^2$ | | | | | ind standard dev | | | | | , 15, 10, 18 | , 5. | | | Δ) 4 87 | | | | (B) 3.8 | | | | - 25. - (A) 4.87 23. 24. (C) 5.87 (D) 6.87 Answer: - Option A **Explanation:** - According to formula S.D. = - 26. The class marks of a certain frequency distribution are 15, 25, 35, 45, 55, 65 then the range = ____. - (A) 25 (B) 50 (C) 55 (D) 65 Answer: - Option B **Explanation:** - According to formula Range L - S. | 27. | The class marks of a certain frequency distribut | ion are 15, 25, 35, 45, 55, 65 then the range = | | | | | | |-----|--|---|--|--|--|--|--| | | (A) 25 | (B) 50 | | | | | | | | (C) 55 | (D) 65 | | | | | | | | Answer: - Option B | | | | | | | | | Explanation: - According to formula Range L - S. | | | | | | | | 28. | The class marks of a certain frequency distribut | ion are 15, 25, 35, 45, 55, 65 then the range = | | | | | | | | (A) 25 | (B) 50 | | | | | | | | (C) 55 | (D) 65 | | | | | | | | Answer: - Option B | | | | | | | | | Explanation: - According to formula Range L - S. | | | | | | | | 29. | The class marks of a certain frequency distribut | ion are 15, 25, 35, 45, 55, 65 then the range = | | | | | | | | (A) 25 | (B) 50 | | | | | | | | (C) 55 | (D) 65 | | | | | | | | Answer: - Option B | | | | | | | | | Explanation: - According to formula Range $L-S$. | | | | | | | | 30. | The class marks of a certain frequency distribut | ion are 15, 25, 35, 45, 55, 65 then the range = | | | | | | | | (A) 25 | (B) 50 | | | | | | | | (C) 55 | (D) 65 | | | | | | | | Answer: - Option B | | | | | | | | | Explanation: - According to formula Range L - S. | | | | | | | | | | | | | | | | | | 7FAI POIV | | | | | | | | | | | | | | | | | Prepared By
Mr. Jadhav G. R. | Verified By Mr. Jadhav G. R. Module Coordinator | Re-Verified By Mr. Dhavan P. P. Academic Coordinator | Approved By Mr. Pathak S. R. First Year Coordinator | |--|---|--|---| | | module occiumate | , todaetino ocoraniator | The Teal Section and |