ZEAL EDUCATION SOCIETY'S

ZEAL POLYTECHNIC, PUNE

NARHE | PUNE -41 | INDIA

Question Bank for Multiple Choice Questions

Program: Diploma in Computer Engineering	Program Code:-CO
Scheme:-I	Semester:-II
Course:- Applied Mathematics	Course Code:-22224

01 – Differential Calculus	Marks: - 24
Content of Chapter: -	*
1.1 Functions and Limits	TIDEX
1.2 Derivatives	
1.3 Application of Derivatives	

1.1 Functions and Limits

1. Let f and g be the function from the set of integers to itself, defined by $f(x) = 2x + 1$	and
---	-----

g(x) = 3x + 4. Then the composition of f and g is B) 6x + 7 A) 6x + 9 D) 6x + 8 C) 6x + 6 Answer: Option A **Explanation:** Put value of g(x) in f(x) **2.** The inverse of function $f(x) = x^3 + 2$ is B) $f^{-1}(y) = (y-2)^{1/3}$ A) $f^{-1}(y) = (y-2)^{1/2}$ C) $f^{-1}(y) = (y)^{1/3}$ D) $f^{-1}(y) = (y-2)$ Answer: Option B **Explanation:** Put y = f(x) and find inverse. 3. The domain of a function is the A) the maximal set of numbers B) the maximal set of numbers which a function for which a function is defined can take values C) it is a set of natural numbers for which a D) none of the mentioned function is defined

Answer: Option A

Explanation: Definition of domain of function.

4. The domain of function $f(x) = x^{1/2}$ is	
A) (2, ∞)	B) (-∞, 1)
C) [0, ∞)	D) None of the mentioned
Answer: Option C	
Explanation: Definition of domain of function.	
5. The range of a function is	
A) the maximal set of numbers for	B) the maximal set of numbers which a
which a function is defined	function can take values
C) it is set of natural numbers for which	D) None of these
a function is defined	
Answer: Option B	
Explanation: Definition of range of function.	
6. What is domain of function $f(x) = x^{-1}$ for it	to be defined everywhere on domain?
A) (2, ∞)	B) (-∞, ∞) – {0}
C) [0, ∞)	D) None of these
Answer: Option B	
Explanation: Definition of domain of function.	
7. The range of function f(x) = sin(x) is	
A) (2, ∞)	B) $(-\infty, \infty) - \{0\}$
C) (-∞, ∞).	D) None of these
Answer: Option C	
Explanation: Definition of range of function.	1998
8. Codomain is the subset of	
A) Domain	B) Range
C) both A & B	D) Neither A nor B
Answer: Option B	
Explanation: Definition of range of function.	
9. If $f(x) = 2^x$ then range of the function is	·
A) (-∞, ∞)	B) (-∞, ∞) - {0}
C) (0, ∞)	D) None of these
Answer: Option C	
Explanation: Put different values of x and use defini	tion of range of function.

10. What is range of function $f(x) = x^{-1}$ which is	defined everywhere on its domain?	
A) (-∞, ∞)	B) (-∞, ∞) – {0}	
C) [0, ∞)	D) None of these	
Answer: Option A		
Explanation: Definition of range of function.		
11. If $f(x) = x^2 + 4$ then range of f(x) is given by?		
A) [4, ∞)	B) (-∞, ∞) – {0}	
C) (0, ∞)	D) None of these	
Answer: Option A		
Explanation: Put different values of x and use definition	of range of function.	
12. If $f(x) = y$ then $f^{-1}(y)$ is equal to		
A) y	B) x	
C) x ²	D) None of these	
Answer: Option B		
Explanation: Definition for inverse of function.		
13. A function f(x) is defined from A to B then f ⁻¹ is a	defined	
A) from A to B	B) from B to A	
C) depends on the inverse of function	D) None of these	
Answer: Option B		
Explanation: Definition for inverse of function.		
14. If f is a function defined from R to R, is given by	$f(x) = 3x - 5$ then $f^{-1}(x)$ is given by	
A) 1/(3x-5)	B) (x+5)/3	
C) does not exist since it is not a bijection	D) None of these	
Answer: Option B		
Explanation: Let $y = f(x)$, therefore $y=3x-5$, put $x = y$ in	in f(x) you will get f(y) then find $f^{-1}(x)$.	
15. If $f(x) = x^4 - 2x + 7$ then $f(0) + f(2) = $		
A) 16	B) 19	
C) 7	D) 26	
Answer: Option D		
Explanation: Put $x = 0$ and $x = 2$ in $f(x)$.		
16. If $f(x) = 16^x + \log_2 x$ then $f(1/4) = $	·	
A) 2	B) 1	
C) 3	D) 0	
Answer: Option D		
Explanation: Put $x = 1/4$ in $f(x)$.		
-	2 of 91	

17. If $f(x) = \log(\sin x)$ then $f\left(\frac{\pi}{2}\right) =$	
A) 2	B) 1
C) 3	D) 0
Answer: Option D	
Explanation: Put $x = \left(\frac{\pi}{2}\right)$ in f(x)	
18. If $f(x) = 3\cos x + 5$ then $f(x)$ is	function.
A) odd	B) even
C) both odd & even	D) Implicit
Answer: Option B	
Explanation: By definition of even function.	
19. If $f(x) = 4x^4 + 3\cos x + x\sin x + 1$ the	n f(x) is function.
A) Odd	B) Even
C) Both odd & even	D) Parametric
Answer: Option B	
Explanation: By definition of even function.	
20. The range of the function $f(x) = 2x + 1$,	for all $3 \le x \le 5$ is
A) [0, 0]	B) [7, 11]
C) [3, 5]	D) [5, 11]
Answer: Option C	
Explanation: Put values of x in $3 \le x \le 5$ and	d use definition of range of function.
21. In the relation $y = f(x)$, 'x' is called as	variable.
A) dependent	B) Independent
C) both dependent & independent	D) None of these
Answer: Option B	
Explanation: Definition of dependent and indepen	dent variable.
22. If $f(x) = 5$ for all $x \in R$ then $f(0) = _$	·
A) 0	B) 5
C) -1	D) 1
Answer: Option B	
Explanation: The value of constant function is con	nstant for all values of 'x'. Therefore f(x) is constant function
23. In the relation $\mathbf{y} = \mathbf{f}(\mathbf{x})$, 'y' is called as	variable.
A) dependent	B) Independent
C) both dependent & independent	D) None of these
Answer: Option A Explanation: Definition of dependent and indepen	dent variable.

24. The function $f(x)$ is an even function if	
A) $f(-x) = f(x) \forall x$	B) $f(-x) = -f(x) \forall x$
C) $f(x) = f(x) \forall x$	D) $f(-x) = -f(-x) \forall x$
Answer: Option A	
Explanation: By definition of even function.	
25. The function $f(x)$ is an odd function if	
A) $f(-x) = f(x) \forall x$	B) $f(-x) = -f(x) \forall x$
C) $f(x) = f(x) \forall x$	D) $f(-x) = -f(-x) \forall x$
Answer: Option A	
Explanation: By definition of odd function.	
26. The function $f(x)$ is an even function if	
A) $f(x) - f(-x) = 0 \forall x$	B) $f(x) + f(-x) = 0 \forall x$
C) $f(-x) + f(-x) = 0 \forall x$	D) None of these
Answer: Option A	
Explanation: By definition of even function.	
27. The function $f(x)$ is an odd function if	
A) $f(x) - f(-x) = 0 \forall x$	B) $f(x) + f(-x) = 0 \forall x$
C) $2f(x) = 0 \forall x$	D) $2f(-x) = 0 \forall x$
Answer: Option B	
Explanation: By definition of odd function.	
28. If $f(-x) = f(x) \forall x$ then the function $f(x)$ is	known as
A) odd function	B) even function
C) algebraic function	D) trigonometric function
Answer: Option B	
Explanation: By definition of even function.	
29. If $f(-x) = -f(x) \forall x$ then the function $f(x)$	is known as
A) odd function	B) even function
C) algebraic function	D) trigonometric function
Answer: Option A	
Explanation: By definition of odd function.	
30. If $f(x) = x^2 + 6x + 10$, then $f(-2) + f(2) =$	·
A) 28	B) 19
C) 26	D) 2
Answer: Option A	
Explanation: Put $x = -2$ and $x = 2$ in $f(x)$	

31. If
$$f(x) = 16^{x} - \log_{2} x$$
, find $f\left(\frac{1}{4}\right) =$ _____.
A) 0 B) 2
C) 1 D) 4

Answer: Option D

Explanation: Put x = (1/4) in f(x) and use laws of Logarithms.

32. If $f(x) = 16^x - \log_2 x$, find $f\left(\frac{1}{2}\right) =$	
A) 3	B) 5
C) 1	D) 4

Answer: Option A

Explanation: Put x = (1/2) in f(x) and use laws of Logarithms. 33. If $f(x) = 16^x + \log_2 x$, find $f(\frac{1}{2}) =$ ______ A) 3 B) 5 C) 0 D) 4 Answer: Option A Explanation: Put $x = (\frac{1}{2})$ in f(x) 34. If $f(x) = \log(\sin x)$, find $f(\frac{\pi}{2}) =$ _____ A) 3 B) 1 C) 0 D) 4

Answer: Option C

 Explanation: Put $x = \left(\frac{\pi}{2}\right)$ in f(x)

 35. If $f(x) = 3x^2 - 5x + K$ and f(-1) = 3f(1) then K =______

 A) 3
 B) 7

 C) 1
 D) 4

Answer: Option A

Explanation: put x= -1 and x=1 in f(x) 36. If f(x) = ax + 10 and f(1) = 15 then a =______ A) 3 B) 7 C) 5 D) 4 Answer: Option C

Explanation: put x=1 in f(x)

37. If $f(x) = x^3 - 5x^2 - 4x + P$, and f(0) = -2 f(3) then P = ____ A) 20 B) -10 C) -20 D) 10 Answer: Option A **Explanation**: put x = 0 and x = 3 in f(x)38. If $f(x) = x^3 - 3x + \sin x$, then f(x) + f(-x) =A) 3 B) 1 C) 0 D) 4 Answer: Option C **Explanation**: put x= -x in f(x) 39. If $f(x) = x^3 + x$, find f(1) + f(2) =A) 8 B) 12 C) 10 D) 14 Answer: Option B **Explanation**: put x = 1 and x = 2 in f(x)40. If $f(x) = x^3 - 3x + \sin x + x \cdot \cos x$, then $f(x) + f(-x) = x^3 - 3x + \sin x + x \cdot \cos x$. A) 3 B) 1 C) 0 D) 4 Answer: Option C **Explanation**: put x = -x in f(x)41. If $f(x) = 3x^4 + x^2 + 5 - 3\cos x + 2\sin^2 x$, then $f(x) + f(-x) = \frac{1}{2}$ B) 2 f(x) A) f(x)C) - f(x)D) none of these **Answer:** Option B **Explanation**: put x = -x in f(x)42. If $f(x) = \sin x$, show that $3f(x) - 4f^3(x)$ A) f(2x)B) 2 f(3x)C) f(x)D) f(3x)Answer: Option D **Explanation**: Use formula for sin 3x and put x=3x 43. If $f(x) = \cos x$, show that $4f^{3}(x) - 3f(x) =$ _____ A) f(2x)B) f(3x) C) f(x)D) 2 f(3x)**Answer:** Option B

Explanation: Use formula for cos 3x and put x=3x

44. If $f(x) = \frac{a^{x} + a^{-x}}{2}$ then $f(x)$ is an	function.
A) odd function	B) even function
C) Algebraic function	D) Trigonometric function
Answer: Option B	
Explanation : Put x=-x in f(x)	
45. If $f(x) = \frac{3^x - 3^{-x}}{2}$ then $f(x)$ is an	function.
A) odd function	B) even function
C) Algebraic function	D) Trigonometric function
Answer: Option B	
Explanation: Put x=-x in f(x)	
46. If $f(x) = \frac{e^{-x} + e^x}{2}$ then $f(x)$ is an	function.
A) odd function	B) even function
C) Algebraic function	D) Trigonometric function
Answer: Option B	
Explanation: Put x=-x in f(x)	
47. If $f(x) = 3x^4 - 2x^2 + \cos x$ then $f(x)$ is an	function.
47. If $f(x) = 3x^4 - 2x^2 + \cos x$ then $f(x)$ is an A) odd function	B) even function
A) odd function	B) even function
A) odd function C) Algebraic function	B) even function
A) odd function C) Algebraic function Answer: Option B	B) even function
A) odd function C) Algebraic function Answer: Option B Explanation: Put x=-x in f(x)	B) even function D) Trigonometric function
A) odd function C) Algebraic function Answer: Option B Explanation: Put x=-x in $f(x)$ 48. If $f(x) = x^3 + 3 \sin x + x$ then $f(x)$ is an A) odd function C) Algebraic function	B) even function D) Trigonometric function function B) even function D) Trigonometric function
A) odd function C) Algebraic function Answer: Option B Explanation: Put x=-x in $f(x)$ 48. If $f(x) = x^3 + 3 \sin x + x$ then $f(x)$ is an A) odd function	B) even function D) Trigonometric function function B) even function D) Trigonometric function
A) odd function C) Algebraic function Answer: Option B Explanation: Put x=-x in $f(x)$ 48. If $f(x) = x^3 + 3 \sin x + x$ then $f(x)$ is an A) odd function C) Algebraic function	B) even function D) Trigonometric function function B) even function D) Trigonometric function
A) odd function C) Algebraic function Answer: Option B Explanation: Put x=-x in $f(x)$ 48. If $f(x) = x^3 + 3 \sin x + x$ then $f(x)$ is an A) odd function C) Algebraic function Answer: Option A	 B) even function D) Trigonometric function function. B) even function D) Trigonometric function
A) odd function C) Algebraic function Answer: Option B Explanation: Put x=-x in $f(x)$ 48. If $f(x) = x^3 + 3 \sin x + x$ then $f(x)$ is an A) odd function C) Algebraic function Answer: Option A Explanation: Put x=-x in $f(x)$	 B) even function D) Trigonometric function function. B) even function D) Trigonometric function
A) odd function C) Algebraic function Answer: Option B Explanation: Put x=-x in f(x) 48. If $f(x) = x^3 + 3 \sin x + x$ then $f(x)$ is an A) odd function C) Algebraic function Answer: Option A Explanation: Put x=-x in f(x) 49. If $f(x) = \frac{x^2 + x}{x^2 + 1}$ then $f(x)$ is	 B) even function D) Trigonometric function function. B) even function D) Trigonometric function function.
A) odd function C) Algebraic function Answer: Option B Explanation: Put x=-x in f(x) 48. If $f(x) = x^3 + 3 \sin x + x$ then $f(x)$ is an A) odd function C) Algebraic function Answer: Option A Explanation: Put x=-x in f(x) 49. If $f(x) = \frac{x^2 + x}{x^2 + 1}$ then $f(x)$ is A) odd function	 B) even function D) Trigonometric function function. B) even function D) Trigonometric function function. B) even function

2. Derivative

1. If $y = 5^x + x^5$ then $\frac{dy}{dx} =$ _____ A) $5x^4 + 5^x \log 5$ B) 0 C) $x^5 + 5^x \log 5$ D) $5x^4 + 5^x$ Answer: Option A **Explanation**: use formula $\frac{d}{dx}(a^x) = \log(a) a^x$ and $\frac{d}{dx}(x^n) = nx^{n-1}$ 2. If $y = (x - \frac{1}{x})^2$ then y' =_____ B) $2x + \frac{2}{x^3}$ A) 0 C) $2x - \frac{2}{x^3}$ D) 1 Answer: Option C **Explanation**: $\frac{d}{dx}(x^n)=nx^{n-1}$ and derivative of composite function 3. If $y = x e^x$ then $\frac{dy}{dx} =$ _____. B) $e^{x}(x+1)$ A) e^x C) (x + 1)D) $x(e^{x} + 1)$ Answer: Option B **Explanation**: Use rule of Derivative of product of functions 4. If y = (x + 1)(x + 2) then $\frac{dy}{dx} =$ B) 2x + 3A) 2x C) 0 D) 2x - 3 Answer: Option B Explanation: Use rule of Derivative of product of functions 5. If $y = \frac{1-x}{1+x}$ then $\frac{dy}{dx} =$ ______. B) $\frac{2}{1+x}$ A) $\frac{-2}{(1+x)^2}$ C) $\frac{1-x}{(1+x)^2}$ D) none of these

Answer: Option A

Explanation: Use rule of Derivative of quotient of functions

6. If
$$\mathbf{y} = \frac{\mathbf{e}^{\mathbf{x}}}{\mathbf{e}^{\mathbf{x}} - 1}$$
 then $\frac{d\mathbf{y}}{d\mathbf{x}} =$ _____.
A) $\frac{-\mathbf{e}^{\mathbf{x}}}{(\mathbf{e}^{\mathbf{x}} - 1)^2}$
C) $\frac{-1}{(\mathbf{e}^{\mathbf{x}} - 1)^2}$
Answer: Option A

Explanation: Use rule of Derivative of quotient of functions

7. If $y = (x^2 + 1)^{10}$ then y' =_____ A) $10(x^2 + 1)^9$ B) $20x(x^2 + 1)^9$ C) 10 $(x^2 + 1)$ D) 20 $(x^2 + 1)$ Answer: Option B **Explanation**: $\frac{d}{dx}(x^n)=nx^{n-1}$ and derivative of composite functions 8. If $f(x) = \sin^3 x$ then f'(x) = _____ A) $3 \cos^2 x \sin x$ B) $3 \sin^2 x \cos x$ C) $3 \sin^2 x$ D) 3 $\sin x \cos x$ Answer: Option B Explanation: $\frac{d}{dx}(\sin x)$ = cos x and derivative of composite function 9. If $y = e^{3x}$ then $\frac{dy}{dx} =$ _____. B) 3e^{3x-1} A) e^{3x} C) 3e^{3x} D) $3x e^{2x}$ Answer: Option C **Explanation**: $\frac{d}{dx}(e^x) = e^x$ and derivative of composite function 10. If $y = 10^{x^2}$ then y' =_____ A) $10^{x^2} \log 10$ B) $10^{x^2} \log x^2$ C) 2x. $10^{x^2} \log 10$ D) $10^{x^2} \log x . 2$ Answer: Option C **Explanation**: $2x \log 10 \cdot \frac{d}{dx}(x^2) = 2x \cdot 10^{x^2} \log 10$ 11. If $y = \log(\sin x)$ then $\frac{dy}{dx} =$ _____ A) $\frac{1}{\sin x}$ B) cot x C) $\frac{1}{\cos x}$ D) tan x Answer: Option B **Explanation**: $\frac{d}{dx} (\log x) = \frac{1}{x}$ and derivative of composite function 12. If $y = \log(x, e^x)$ then $\frac{dy}{dx} =$ _____. B) $\frac{1}{x e^x}$ A) $\frac{x-1}{x}$ C) $\frac{x+1}{x}$ D) x. e^x Answer: Option C

Explanation: $\frac{d}{dx}(\log x) = \frac{1}{x}$ and derivative of composite function

13. If
$$y = \sin^{-1}(\cos x)$$
 then $\frac{dy}{dx} =$ _______.
A) 0 B) 1
C) -1 D) $\frac{\pi}{2}$
Answer: Option C
Explanation: $(\cos x) = \sin\left(\frac{\pi}{2} - x\right)$
14. If $y = \cos\left(\sec^{-1}\left(\frac{1}{x}\right)\right)$ then $y' =$ _______.
A) 0 B) 1
C) -1 D) 2
Answer: Option B
Explanation: $\sec^{-1}\left(\frac{1}{x}\right) = \cos^{-1}x$
15. If $y = \sin^{-1}(\sqrt{1 - x^2})$ then $\frac{dy}{dx} =$ ______.
A) $\frac{-1}{\sqrt{1 - x^2}}$ B) $\frac{1}{1 - x^2}$
C) $\frac{1}{\sqrt{1 - x^2}}$ D) $\frac{-1}{1 - x^2}$
Answer: Option A
Explanation: Put $x = \cos\theta$
16. If $y = \cos^{-1}(3x - 4x^3)$ then $\frac{dy}{dx} =$ ______.
A) $\frac{-3}{\sqrt{1 + x^2}}$ B) $\frac{3}{1 - x^2}$
C) $\frac{1}{\sqrt{1 - x^2}}$ D) $\frac{-3}{\sqrt{1 - x^2}}$
Answer: Option D
Explanation: put $x = \sin \theta$ and formula for $\sin 3\theta$
17. If $x^2 + 3xy - y^2 = 11$ then $\frac{dy}{dx}$ at point (1, 2) is ______.
A) 0 B) 5
C) 3 D) 8
Answer: Option D

Explanation: Use derivative of Implicit functions **18. If** $\mathbf{x}^2 + \mathbf{y}^2 = \mathbf{x}\mathbf{y}$ then $\frac{d\mathbf{y}}{d\mathbf{x}} =$ _____.

$ff x^2 + y^2 = xy$ then $\frac{1}{dx} = $	
$A)\frac{y-2x}{2y-x}$	$B)\frac{x-2y}{2y+x}$
$C)\frac{y + 2x}{2y + x}$	$D)\frac{x-y}{y+x}$

Answer: Option A

Explanation: Use derivative of Implicit functions

19. If $y = x^x$ then $\frac{dy}{dx} = -$		
ux	·	
A) $\frac{1 + \log x}{2}$	B) x. x ^{x -1}	
$C) y (1 + \log x)$	D) $\frac{y(1 - \log x)}{2}$	
Answer: Option C		
Explanation: Use Logarithm	ic differentiation	
20. If $y = x^{\sqrt{x}}$ then $\frac{dy}{dx} =$	·	
A) $\frac{y(2 + \log x)}{2\sqrt{x}}$	B) $\sqrt{x} \cdot x^{\sqrt{x}-1}$	
C) $\frac{y(1 - \log x)}{2}$	D) \sqrt{x} . x ^{x -1}	
Answer: Option A		
Explanation: Use Logarithm	ic differentiation	
21. If $x = at^2$, $y = 2at t$	hen $\frac{dy}{dx} = $	
A) $\frac{-1}{t^2}$	B) $\frac{1}{t}$	
C) $\frac{1}{2}$	D) $\frac{2at}{-5}$	
Answer: Option B		
Explanation: Use derivative	of Parametric functions	
22. If $x = a \cos \theta$, $y = a$	$a \sin \theta$ then $\frac{dy}{dx}$ at $\theta = \frac{\pi}{4}$ is	
A) 0	B) -1	
C) 1	D) $^{1}/_{2}$	
Answer: Option B	ESTU-1998	
Explanation: Use derivative of Parametric functions		
23. Differentiate log x w.		
A) —x	B) x	
C) -1	D) 1	
Answer: Option A		
Explanation: Use derivative of one function with respect to another function		
24. Differentiate $\sin^{-1} x$ w	v. r. to $\sqrt{1-x^2}$:	
A) —x	B) x	

C) $1/_{\rm X}$ D) $-1/_{\rm X}$

Answer: Option D

Explanation: Use derivative of one function with respect to another function

25. The $\frac{d^2y}{dx^2}$ is known as	
A) First order derivative	B) Second order derivative
C) Higher order derivative of order 'n'	D) None of These
Answer: Option B	,
Explanation: Use definition of 2 nd order derivative	
26. Geometrically $f'(x)$ is known as	
A) Slope of Normal	B) Slope of Curve
C) Slope of Tangent	D) Equation of curve
Answer: Option C	
Explanation: Geometrical meaning of derivative	
27. The geometrically $\frac{dy}{dx}$ is known as	
A) Slope of Normal	B) Slope of Curve
C) Slope of Tangent	D) Equation of curve
Answer: Option C	
Explanation: Geometrical meaning of derivative	
28. The slope of tangent to the curve $x \cdot y = 6$ at (1	, 6) is
A) 5	B) -1
C) -6 Answer: Option C	D) 3
Explanation : slope of tangent= $\frac{dy}{dx}$	
29. The slope of tangent to the curve $x^2 + y^2 = 25$	5 at the point (-3, 4) is
	B) ⁴ / ₃
C) -3/4	$D)^{-4}/3$
Answer: Option A	
Explanation : slope of tangent= $\frac{dy}{dx}$	
30. At what point on the curve $y = e^x$ the slope is	1?
A) (1, 0)	B) (0, 1)
C) (1, -1) Answer: Option B	D) (1, 1)
Explanation : slope of tangent= $\frac{dy}{dx}$	
31. The equation of tangent to the curve $y = x^2$ at	t (-1, 1) is
A) $y + x - 1 = 0$	B) $y - x - 1 = 0$
C) $2x + y + 1 = 0$ Answer: Option C	D) $2x - y - 1 = 0$
Explanation : Use $y-y_1=m(x-x_1)$, m=slope of tangent	

_-

32. The tangent to the curve $y = f(x)$ is parallel to x- axis then $\frac{dy}{dx} =$			
A) 1	B) 0		
C) -1	D) not defined		
Answer: Option B			
Explanation : here y=0, $\frac{dy}{dx}$ =0			
33. The tangent to the curve $y = f(x)$ is parallel to	x- axis then slope of normal is		
A) 1	B) 0		
C) -1	D) not defined		
Answer: Option D			
Explanation : slope of normal = $\frac{-1}{\text{slope of tangent}} = \frac{-1}{0} = 1$	not defined		
34. If $y = f(x)$ be any curve then slope of normal	to the curve is		
A) $\frac{dy}{dx}$	B) $\frac{1}{\frac{dy}{dx}}$		
C) $\frac{-1}{\frac{dy}{dx}}$	D) $\frac{dx}{dy}$		
Answer: Option C			
Explanation : slope of normal = $\frac{-1}{\text{slope of tangent}}$			
35. If $y = f(x)$ be any curve then slope of normal	to the curve is		
A) f'(x)	B) $\frac{-1}{f'(x)}$		
C) $\frac{1}{f'(x)}$	D) None of these		
Answer: Option B	U-1998		
Explanation : slope of normal = $\frac{-1}{\text{slope of tangent}}$			
36. If $y = f(x)$ be any curve then slope of tangent	t to the curve is		
A) $\frac{dy}{dx}$	B) $\frac{1}{\frac{dy}{dx}}$		
C) $\frac{-1}{\frac{dy}{dx}}$	D) $\frac{dx}{dy}$		
Answer: Option A			
Explanation : slope of tangent= $\frac{dy}{dx}$			
37. If $y = f(x)$ be any curve then slope of tangent to the curve is			
A) $f'(x)$	B) $\frac{-1}{f'(x)}$		
C) $\frac{1}{f'(x)}$ Answer: Option A	D) None of these		
Explanation : $f'(x)$			
-			

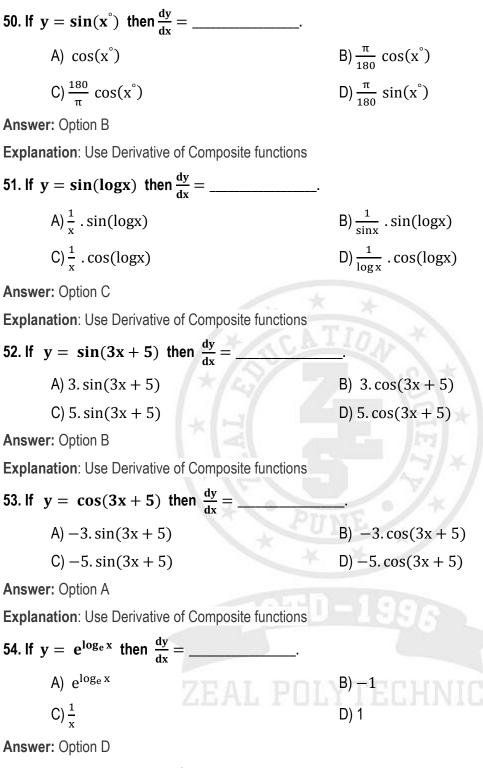
38. The tangent to the curve $y = f(x)$ is parallel to x	x- axis then		
A) $\frac{\mathrm{d}y}{\mathrm{d}x} \neq 0$	$B)\frac{\mathrm{d} y}{\mathrm{d} x} > 0$		
$C)\frac{dy}{dx} < 0$	$D)\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}\mathbf{x}}=0$		
Answer: Option D			
Explanation: Equation of tangent is y=0			
39. The tangent to the curve $y = f(x)$ is parallel to y	y- axis then		
A) $\frac{\mathrm{d}y}{\mathrm{d}x} \neq 0$	$B)\frac{\mathrm{d}y}{\mathrm{d}x} > 0$		
$C)\frac{dy}{dx} = 0$	D) slope of tangent cannot defined		
Answer: Option C			
Explanation: Equation of tangent is x=0			
40. If $y = x^{10} + 10^x + e^x + 10^{10}$ then $\frac{dy}{dx} = $	LO AT		
A) $10x^9 + 10^x \cdot \log_e 10 + e^x + 10 \cdot 10^9$	B) $10x^9 + 10^x \cdot \log_e 10 + e^x$		
C) $10x^9 + 10^x + e^x + 10.10^9$	D) $10x^{10-1} + 10^x \cdot \log_e 10 + e^x + 10 \times 10^9$		
Answer: Option B			
Explanation: Use derivatives of standard functions			
41. If $y = e^x \sin x$ then $\frac{dy}{dx} =$			
A) $e^{x}(\sin x - \cos x)$	B) $(\sin x - \cos x)$		
C) $e^{x}(\sin x + \cos x)$	D) $(\sin x + \cos x)$		
Answer: Option C			
Explanation: Use rule of derivative of Product of 2 funct	ions		
42. If $y = \sec x \cdot \tan x$ then $\frac{dy}{dx} =$	2098		
A) $\sec x (\sec^2 x - \tan^2 x)$	B) $\sec x (\sec^2 x + \tan^2 x)$		
C) $\sec x (\tan^2 x - \sec^2 x)$	D) none of these		
Answer: Option B			
Explanation: Use rule of derivative of Product of 2 functions			
43. If $y = e^x \tan x$ then $\frac{dy}{dx} =$			
A) $e^{x}(\sec^{2}x - \tan^{2}x)$	$B) e^{x}(\sec^{2}x + \tan^{2}x)$		
C) $e^{x}(\sec^{2}x + \tan x)$	D) $e^{x}(\sec^{2}x - \tan x)$		
Answer: Option C			

Explanation: Use rule of derivative of Product of 2 functions

44. If
$$\mathbf{y} = \frac{\sin x}{1 - \cos x}$$
 then $\frac{dy}{dx} = \underline{\qquad}$.
A) $\frac{1}{1 - \cos x}$ B) $\frac{-1}{1 - \cos x}$
C) $\frac{1}{1 + \cos x}$ D) $\frac{-1}{1 + \cos x}$
Answer: Option B
Explanation: Use rule of derivative of Quotient of 2 functions
45. If $\mathbf{y} = \mathbf{x}^{\mathbf{a}} + \mathbf{a}^{\mathbf{x}} + \mathbf{e}^{\mathbf{x}} + \mathbf{a}^{\mathbf{a}}$ then $\frac{dy}{dx} = \underline{\qquad}$.
A) $ax^{a-1} + a^{\mathbf{x}} \log_{\mathbf{e}} a + e^{\mathbf{x}}$ D) $ax^{a-1} + a^{\mathbf{x}} \log_{\mathbf{e}} a + e^{\mathbf{x}} + 1$
C) $ax^{a-1} + a^{\mathbf{x}} \log_{\mathbf{e}} a + e^{\mathbf{x}}$ D) $ax^{a-1} + a^{\mathbf{x}} \log_{\mathbf{e}} a + e^{\mathbf{x}} + 1$
C) $ax^{a-1} + a^{\mathbf{x}} + e^{\mathbf{x}}$ D) $ax^{a-1} + a^{\mathbf{x}} \log_{\mathbf{e}} a + e^{\mathbf{x}} - 1$
Answer: Option C
Explanation: Use derivatives of standard functions
46. If $\mathbf{y} = \frac{\sin x}{e^{\mathbf{x}}}$ then $\frac{dy}{dx} = \underline{\qquad}$
A) $\frac{\sin x - \cos x}{e^{\mathbf{x}}}$ D) $\frac{\cos x - \sin x}{e^{\mathbf{x}}}$
Answer: Option D
Explanation: Use rule of derivative of Quotient of two functions.
47. If $\mathbf{y} = \mathbf{x}^{2a} + (2a)^{\mathbf{x}} + (2a)^{2a}$ then $\frac{dy}{dx} = \underline{\qquad}$.
A) $ax^{2a-1} + 2a^{\mathbf{x}} \log_{\mathbf{e}} a$ B) $2a \cdot x^{2a-1} + (2a)^{\mathbf{x}} \log_{\mathbf{e}} (2a)$
C) $2a \cdot x^{2a-1} + (2a)^{\mathbf{x}} \log_{\mathbf{e}} (2a) + 2a \cdot (2a)^{2a-1}$ D) $ax^{2a-1} + 2a^{\mathbf{x}} \log_{\mathbf{e}} a + 2a \cdot (2a)^{2a-1}$
Answer: Option A
Explanation: Use rule of derivative of Product of two functions.
48. If $\mathbf{y} = \cos^2 x$ then $\frac{dy}{dx} = \underline{\qquad}$.
A) $\sin(2x)$ D) $-\cos(2x)$
Answer: Option B
Explanation: Derivative of Composite functions.
49. If $\mathbf{y} = \mathbf{e}^{3x} \cdot \sin 2x$ then $\frac{dy}{dx} = \underline{\qquad}$.
A) $e^{3x}[2\cos(2x) + 2\sin(2x)]$ B) $e^{3x}[2\cos(2x) - 2\sin(2x)]$
C) $e^{3x}[2\cos(2x) + 2\sin(2x)]$ C) $e^{3x}[3\cos(2x) + 2\sin(2x)]$

Answer: Option C

Explanation: Use rule of derivative of Product of 2 functions



Explanation: Use derivative of Logarithmic Functions

Answer: Option B

Explanation: Use derivative of Logarithmic Functions

56. If $y = \log(\sec x + \tan x)$ then $\frac{dy}{dx} = \frac{1}{2}$ B) $\frac{1}{\sec x + \tan x}$ A) tan x C) sec x D) None of these Answer: Option C **Explanation**: Use derivative of Logarithmic Functions 57. If $y = e^{x \cdot \log_e 5}$ then $\frac{dy}{dx} =$ _____ A) 5^{x} . $\log_{e} 5$ B) $e^{x \cdot \log_e 5}$ C) $e^{x \cdot \log_{e} 5} \cdot \frac{1}{5}$ D) None of these Answer: Option A Explanation: Use derivative of Logarithmic Functions 58. If $y = \cos^{-1}(\sin x)$ then $\frac{dy}{dx} =$ _____ B) 1 A) 0 D) $\frac{\pi}{2}$ C) −1 Answer: Option C Explanation: Use derivative of Inverse Trigonometric functions 59. If $y = tan\left[cot^{-1}\left(\frac{1}{x}\right)\right]$ then $\frac{dy}{dx} =$ B) 1 A) 0 D) $\frac{\pi}{2}$ C) -1Answer: Option B Explanation: Use derivative of Inverse Trigonometric functions 60. If y = $\cos^{-1}(2x^2 - 1)$ then $\frac{dy}{dx} =$ _____

A)
$$\frac{-1}{\sqrt{1-x^2}}$$

B) $\frac{1}{1-x^2}$
C) $\frac{-2}{\sqrt{1-x^2}}$
D) $\frac{-1}{1-x^2}$

Answer: Option C

Explanation: Use derivative of Inverse Trigonometric functions using substitution x=cos O

61. If
$$y = log(4 - 3x)$$
 then $\frac{dy}{dx} =$ _____.
A) $\frac{3}{4-3x}$
B) $\frac{4}{4-3x}$
C) $\frac{3}{4+3x}$
D) $\frac{3}{3x-4}$

Answer: Option D

Explanation: Use derivative of composite functions

62. If $y = \log(\operatorname{cosec} x - \operatorname{cot} x)$ then $\frac{dy}{dx} =$			
A) cosec x	B) $\frac{1}{\cos ex - \cot x}$		
C) sec x	D) None of these		
Answer: Option A			
Explanation: Use derivative of Logarithmic Functions			
63. If $y = \sin^{-1}\left(\frac{1}{x}\right)$ then $\frac{dy}{dx} =$			
A) $\frac{1}{x\sqrt{1-x^2}}$	$B)\frac{-1}{x\sqrt{1-x^2}}$		
C) $\frac{1}{x\sqrt{x^2-1}}$	D) $\frac{-1}{x\sqrt{x^2-1}}$		
Answer: Option D			
Explanation: Use derivative of Inverse Trigonometric fu	nctions		
64. If $x^2 + y^2 + xy - y = 0$ then $\frac{dy}{dx}$ at the point	(1, 2) is		
A) 0	B) 1		
C) -1	D) None of these		
Answer: Option C			
Explanation: Use derivative standard functions			
65. If $x^p \cdot y^q = (x + y)^{p+q}$ then $\frac{dy}{dx} =$	×/		
A) $\frac{y}{x}$	B) $\frac{-y}{x}$		
C) $\frac{x}{y}$	D) $\frac{-x}{y}$		
Answer: Option A			
Explanation: Use derivative of Logarithmic Functions			
66. Differentiate $\mathbf{x}^{(1/x)}$ w. r. to x:			
A) $\frac{1}{x} (1 - \log x)$	B) $\frac{1}{x^2}$ (1 - log x)		
C) $\frac{1}{x^2}$ (1 + log x)	D) None of these		
Answer: Option D			
Explanation: Derivative of one function w.r.to another function			
67. If $x = 3at^2$, $y = 2at^3$ then $\frac{dy}{dx} =$			
A) -t	B) $\frac{1}{t}$		
C) $\frac{-1}{t}$	D) t		

Answer: Option D

Explanation: Derivative of Parametric functions

68. The equation of tangent to the curve y = f(x) at point (x_1, y_1) is_

$$\begin{array}{l} \mathsf{A} (y - y_1) = \ -\left(\frac{dy}{dx}\right)_{(x_1, y_1)} (x - x_1) \\ \mathsf{C} (y + y_1) = \ \left(\frac{dy}{dx}\right)_{(x_1, y_1)} (x + x_1) \\ \end{array} \\ \begin{array}{l} \mathsf{B} (y - y_1) = \ \left(\frac{dy}{dx}\right)_{(x_1, y_1)} (x - x_1) \\ \mathsf{D} (y + y_1) = \ -\left(\frac{dy}{dx}\right)_{(x_1, y_1)} (x + x_1) \\ \end{array}$$

Answer: Option B

Explanation: Use $y-y_1 = m.(x - x_1)$

69. The equation of normal to the curve y = f(x) at point (x_1, y_1) is_____

A)
$$(y + y_1) = \frac{1}{\left(\frac{dy}{dx}\right)_{(x_1, y_1)}} (x + x_1)$$

B) $(y - y_1) = \frac{1}{\left(\frac{dy}{dx}\right)_{(x_1, y_1)}} (x - x_1)$
C) $(y + y_1) = \left(\frac{dy}{dx}\right)_{(x_1, y_1)} (x + x_1)$
D) $(y - y_1) = \frac{-1}{\left(\frac{dy}{dx}\right)_{(x_1, y_1)}} (x - x_1)$

Answer: Option D

Explanation: slope of normal = $\frac{-1}{\text{slope of tangent}}$

70. The gradient of the curve $y = \sqrt{x^3}$ at x = 4 is

A) -3	B) 3	
C) 2	D) -2	

Answer: Option B

Explanation: The gradient of the curve = $\left(\frac{dy}{dx}\right)$

71. At point on the curve $y = 3x - x^2$ the slope is -5?

A) (4, 4)B) (-4, 4)C) (4, -4)D) (-4, -4)

Answer: Option C

Explanation: slope = $\left(\frac{dy}{dx}\right)$

72. The equation of tangent to the curve y = x(2 - x) at point (2, 0) is _____

A)
$$2x - y = 4$$

C) $x - 2y = 2$
B) $2x + y + 4 = 0$
D) $2x + y = 4$

Answer: Option D

Explanation: Use slope point form

73. The equation of normal to the curve y = x(2 - x) at point (2, 0) is _____.

A) 2x - y = 4C) x - 2y = 2B) 2x + y + 4 = 0D) 2x + y = 4

Answer: Option C

Explanation: Use slope point form

74. At point on the curve $y = x^2 - 4x + 2$ the slope of tangent is 10 ?

Answer: Option A

Explanation: Use slope point form and slope = $\left(\frac{dy}{dx}\right)$

75. The function y = f(x) has said to have maximum value at x = a if ______

A) $\frac{\mathrm{dy}}{\mathrm{dx}} = 0$ &	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} > 0$	$B)\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \ \&$	$\frac{\mathrm{d}^2 y}{\mathrm{d} \mathrm{x}^2} < 0$
C) $\frac{dy}{dx} \neq 0$ &	$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} > 0$	D) $\frac{dy}{dx} \neq 0$ &	$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} < 0$

Answer: Option B

Explanation: Use Condition for Maxima

76. The function $\mathbf{y} = \mathbf{f}(\mathbf{x})$ has said to have minimum value at $\mathbf{x} = \mathbf{a}$ if $A) \frac{dy}{dx} = 0 \& \frac{d^2y}{dx^2} > 0 \qquad B) \frac{dy}{dx} = 0 \& \frac{d^2y}{dx^2} < 0$ $C) \frac{dy}{dx} \neq 0 \& \frac{d^2y}{dx^2} > 0 \qquad D) \frac{dy}{dx} \neq 0 \& \frac{d^2y}{dx^2} < 0$

Answer: Option A

Explanation: Use Condition for Minima

77. If a metal wire 36cm long is bent to form a rectangle, then what are its dimensions when its area is maximum?

A) Length = 9, Breadth = 8	B) Length = 8, Breadth = 9

C) Length = 9, Breadth = 9	D) None of these
----------------------------	------------------

Answer: Option C

Explanation: Use Condition for Maxima and perimeter of rectangle

78. Divide 80 into two parts such that their product is maximum i.e., one part = ____ and other part = ____

C) 70, 10

B) 50, 30 D) 40, 40

Answer: Option D

Explanation: Use Condition for Maxima

79. If a metal wire 40cm long is bent to form a rectangle, then what are its dimensions when its area is maximum?

A) Length = 10, Breadth = 10	B) Length = 20, Breadth = 20
C) Length = 9, Breadth = 9	D) None of these

Answer: Option A

Explanation: Use Condition for Maxima and perimeter of rectangle

80. Divide 20 into two parts such that the product of one and cube of the other is maximum then

	o parts such that the prod	
one part =	and other part =	
A) 10, 10		B) 12, 8
C) 9, 11		D) 15, 5
Answer: Option D		
Explanation: Use Col	ndition for Maxima	
81. A fence of length	100m is to be used to for	m three sides of a rectangular enclosure, the fourth
being a wall then the	e maximum area which car	n be enclosed by the fence is
A) 1250 sq. m	۱.	B) 1200 sq. m.
C) 1150 sq. m	n.	D) 1300 sq. m.
Answer: Option A		
Explanation: Use Cor	ndition for Maxima	
82. The Curvature of	f the curve is nothing but _	ATION
A) amount of	curvature	B) tightness of bends
C) radius of c	ircle	D) none of these
Answer: Option B		
Explanation: Use def	finition of the Curvature of the	e curve
83. The curvature of	the Circle is	
A) Variable		B) Tightness of bends
C) Constant		D) None of these
Answer: Option C		
Explanation: Use def	finition of the Curvature of the	e curve
84. The curvature of	the circle is	<u>r n - 1988</u> . F
A) equal to ra	dius of circle	B) equal to reciprocal of radius
C) equal to cu	urvature of the curve	D) none of these
Answer: Option B		
Explanation: Use def	finition of the Curvature of the	e curve
85. The radius of cur	rvature is equal to	
A) $\rho = \frac{\left[1 + \rho\right]}{\frac{\rho}{\rho}}$	$\frac{\left(\frac{dy}{dx}\right)^2}{\frac{d^2y}{dx^2}}$	B) $\rho = \frac{\left[1 - \left(\frac{dy}{dx}\right)^2\right]^{3/2}}{\frac{d^2y}{dx^2}}$

C)
$$\rho = \frac{\left[1 - \frac{dy}{dx}\right]^{3/2}}{\frac{d^2 y}{dx^2}}$$
 D) $\rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}}{\frac{d^2 y}{dx^2}}$

Answer: Option D

Explanation: Use definition of the Curvature of the curve

86. The radius of curvature is equal to	
A) reciprocal of radius of curve	B) reciprocal of curvature of the curve
C) reciprocal of radius of circle	D) curvature of the curve
Answer: Option B	
Explanation: Use definition of the Curvature of the	e curve
87. Let 'R' is the radius of circle then curvature	e of circle is equal to
A) R	B) R = 1
C) $\frac{1}{R}$	D) none of these
Answer: Option C	
Explanation: Use definition of the Curvature of the	e curve
88. The radius of curvature is always	* *
A) positive	B) negative
C) may be positive or negative	D) none of these
Answer: Option A	
Explanation: Use definition of the Curvature of the	e curve
89. The radius of curvature can be negative on	
A) $\frac{dy}{dx} < 0$	B) $\frac{dy}{dx} > 0$ D) $\frac{d^2y}{dx^2} < 0$
$C)\frac{d^2y}{dx^2} > 0$	$D)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} < 0$
Answer: Option D	
Explanation: Use definition of the Curvature of the	e curve
90. The radius of curvature of the curve $y = x$	x ³ at (1, 1) is =
A) 5.27 units	B) 31.623 units
C) 30.623 units	D) none of these
Answer: Option A	OI VTECHNIC
Explanation: Use formula of the Curvature of the	curve
91. The radius of curvature of the curve $y = x$	³ at (2, 8) is =
A) 145 units	B) 145.50 units
C) $\sqrt{145}$ units	D) none of these
Answer: Option B	
Explanation: Use formula of the Curvature of the	curve

92. A telegraph wire hangs in the form of a curve $y = a \cdot \log\left(\sec\left(\frac{x}{a}\right)\right)$, where 'a' is constant then the curvature at any point is _____.

A)
$$\frac{1}{a}\cos\left(\frac{x}{a}\right)$$
B) $\frac{1}{a}\cos(x)$ C) $\frac{1}{a}\cos(a)$ D) $\frac{1}{a}\sec\left(\frac{x}{a}\right)$

Answer: Option A

Explanation: Use formula of the Curvature of the curve

93. A telegraph wire hangs in the form of a curve $y = a \cdot \log\left(\sec\left(\frac{x}{a}\right)\right)$, where 'a' is constant then the radius of curvature at any point is _____.

A)
$$\frac{1}{a}\cos\left(\frac{x}{a}\right)$$
B) $\frac{1}{a}\cos(x)$ C) $\frac{1}{a}\cos(a)$ D) $a \sec\left(\frac{x}{a}\right)$

Answer: Option A

Explanation: Use formula of the Curvature of the curve

94. A telegraph wire hangs in the form of a curve $y = a \cdot \log\left(\sec\left(\frac{x}{a}\right)\right)$, where 'a' is constant then the

radius of curvature at any point is

A)
$$\frac{1}{\operatorname{asec}\left(\frac{x}{a}\right)}$$

C) $\frac{1}{a}\cos(a)$
B) $\frac{1}{a}\cos(x)$
D) $\operatorname{asec}\left(\frac{x}{a}\right)$

Answer: Option A

Explanation: Use formula of the Curvature of the curve

95. A telegraph wire hangs in the form of a curve $y = a \cdot \log\left(\sec\left(\frac{x}{a}\right)\right)$, where 'a' is constant then the

curvature at any point is ______.A)
$$\frac{1}{a} \cos\left(\frac{x}{a}\right)$$
B) $\frac{1}{a} \cos(x)$ C) $\frac{1}{a \sec\left(\frac{x}{a}\right)}$ D) $\frac{1}{a} \cos(a)$

Answer: Option C

Explanation: Use formula of the Curvature of the curve

96. The radius of curvature of the curve $y = e^x$ at the point where it crosses the y-axis.

A) $2\sqrt{3}$ units	B) 3√3 units
C) $3\sqrt{2}$ units	D) $2\sqrt{2}$ units

Answer: Option A

Explanation: Use formula of the Curvature of the curve

97. If $y = e^x$ then which of the following is correct.

A) $\frac{dy}{dx} < \frac{d^2y}{dx^2}$	$B)\frac{\mathrm{d}y}{\mathrm{d}x} > \frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$
$C)\frac{\mathrm{d}^2 \mathrm{y}}{\mathrm{d} \mathrm{x}^2} = \frac{\mathrm{d} \mathrm{y}}{\mathrm{d} \mathrm{x}}$	$D)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \neq \frac{\mathrm{d}y}{\mathrm{d}x}$

Answer: Option C

Explanation: Use definition of the Curvature of the curve

98. The curvature of the curve $y^2 = 4x$ at the point $(2, 2\sqrt{2})$ is		
A) $6\sqrt{3}$ units	B) $\frac{1}{6\sqrt{3}}$ units	
C) $- 6\sqrt{3}$ units	D) $\frac{-1}{6\sqrt{3}}$ units	
Answer: Option A		
Explanation: Use formula of the Curvature of the curve		
99. A beam is bent in the form of the curve $y = 2 \sin x - \sin 2x$, then the radius of curvature of the		
beam at the point $x = \frac{\pi}{2}$ is		
A) $\frac{5\sqrt{5}}{2}$ units	B) $-5\sqrt{5}$ units	
C) $\frac{2}{5\sqrt{5}}$ units	D) $-\frac{5\sqrt{5}}{2}$ units	
Answer: Option A		
Explanation: Use formula of the Curvature of the curve.	ALC O X	
100. Divide 120 into two parts such that their product is maximum i.e., one part =and other part =		
A) 60, 60	B) 50, 70	
C) 80, 40	D) 90, 30	
Answer: Option A		
Explanation: Use Condition for Maxima		

ZEAL POLYTECHNIC, PUNE

NARHE | PUNE -41 | INDIA

Question Bank for Multiple Choice Questions

Program: Diploma in Computer Engineering	Program Code:-CO
Scheme:-I	Semester:-II
Course:- Applied Mathematics	Course Code:-22224

02 – Integral Calculus	Marks: - 16	
Content of Chapter: -		
2.1 Simple integration: Rules of integration and integ	ration of standard functions	
2.2 Methods of integration	1 S *	
a) Integration by Substitution		
b) Integration by parts		
c) Integration by partial fractions		

1. Integration is also known as B) Anti-derivative A) Derivative C) Function D) None of these Answer: Option B **Explanation:** By definition of integration 2. 'zero' is the integration of_ B)∫x dx D)∫0 dx A)∫k dx C) ∫ 1 dx Answer: Option D Explanation: By definition of integration for integration of zero 3. $\int \mathbf{k} \, d\mathbf{x} =$ A) 0 B) 1 C) kx + cD) x + cAnswer: Option C

Explanation: By definition of integration for constant

4. $\int 1 dx =$	
A) 1	B) x + c
C) 0	D) 1 + c
Answer: Option B	
Explanation: By definition of integration for constant	
5. $\int \mathbf{d}\mathbf{p} = $	
A) 0	B) p
C) p + c	D) Cannot defined
Answer: Option C	
Explanation: By definition of integration for 1	
6 . ∫ Body =	
A) 0	B) Bdy + c
C) Boy + c	D) Cannot defined
Answer: Option C	
Explanation: By definition of integration	
$7. \int \mathbf{x}^{\mathbf{m}} \mathbf{dx} = \underline{\qquad}$	
A) $x^m + c$	B) $(m - 1) x^m + c$
C) m. $x^{m-1} + c$	$D)\frac{\mathbf{x}^{m+1}}{m+1} + c$
Answer: Option D	
Explanation: By definition of integration for power of x	
8. $\int x^{2019} dx = $	
A) $x^{2019} + c$	B) 2018 x ²⁰¹⁹ + c
C) 2019. $x^{2019-1} + c$	D) $\frac{x^{2020}}{2020} + c$
Answer: Option D	
Explanation: $\int x^m dx = \frac{x^{m+1}}{m+1} + c.$	
9. $\int \frac{1}{x} dx = $	
A) $\log x + c$	B) $\frac{-1}{x^2} + c$
C) $\frac{1}{\log x} + c$	$D)\frac{1}{x} + c$
Answer: Option A	
Four laws the set Devide fighting of intermedian	

Explanation: By definition of integration

10. $\int \frac{1}{x^n} dx =$ _____ B) $\frac{-1}{x^{n}} + c$ A) $\log x^n + c$ C) $\frac{-1}{x^{n-1}} + c$ D) $\frac{-1}{(n-1)x^{(n-1)}} + c$ Answer: Option D **Explanation:** $\int x^m dx = \frac{x^{m+1}}{m+1} + c.$ 11. $\int \sqrt{\mathbf{x}} \, d\mathbf{x} =$ _____ A) $\frac{2 x^{3/2}}{3} + c$ B) $\frac{3 x^{3/2}}{2} + c$ C) $\frac{x^{3/2}}{2} + c$ D) $\frac{1}{2\sqrt{x}} + c$ Answer: Option A **Explanation:** $\int x^m dx = \frac{x^{m+1}}{m+1} + c.$ 12. $\int x^{3/2} dx =$ _____ A) $\frac{x^{5/2}}{2} + c$ B) $\frac{x^{5/2}}{5} + c$ C) $\frac{2 x^{5/2}}{5} + c$ $\mathsf{D})\frac{3\sqrt{x}}{2} + \mathsf{c}$ Answer: Option C **Explanation:** $\int x^m dx = \frac{x^{m+1}}{m+1} + c.$ 13. $\int \frac{1}{\sqrt{x}} dx =$ _____ A) $\sqrt{x} + c$ B) $\frac{1}{\sqrt{x}} + c$ C) $\frac{2}{\sqrt{x}} + c$ D) $2\sqrt{x} + c$ Answer: Option D **Explanation:** $\int x^m dx = \frac{x^{m+1}}{m+1} + c.$ 14. $\int e^x dx =$ _____ A) $\frac{1}{a^{x}} + c$ B) x. $e^{x-1} + c$ D) $\frac{e^{x+1}}{x+1} + c$ C) $e^{x} + c$

Answer: Option C

Explanation: By definition of integration for power of e.

 $15. \int a^x \, dx = \underline{\qquad}.$

A)
$$\frac{a^{x+1}}{x+1} + c$$

B) $\frac{a^x}{\log a} + c$
C) x. $a^{x-1} + c$
D) $a^x + c$

Answer: Option B

Explanation: By definition of integration for power of constant

16. $\int 3^x \cdot 2^x dx =$ _____. A) $3^{x} \cdot 2^{x} + c$ B) x. $6^{x-1} + c$ C) $\frac{6^{x}}{\log 6}$ + c $D)\frac{3^{x}}{\log 3} \times \frac{2^{x}}{\log 2} + c$ Answer: Option C **Explanation:** $\int a^x dx = \frac{a^x}{\log a} + c$ 17. $\int e^{x-1} dx =$ _____ A) $\frac{1}{e^{x-1}} + c$ $D)\frac{e^x}{x} + c$ C) $(x - 1)e^{x-2} + c$ Answer: Option B **Explanation:** By definition of integration for power of e. 18. $\int e^{2\log x} dx =$ B) $e^{2\log x} + c$ A) $\frac{x^{3}}{2} + c$ C) $2 \log x e^{2 \log x - 1} + c$ D) None of these Answer: Option A **Explanation:** $e^{2\log x} = x^2 \int x^m dx = \frac{x^{m+1}}{m+1} + c.$ 19. $\int e^{x \log 2} dx =$ _____ B) $e^{x \log 2} + c$ A) $\frac{x^{3}}{2} + c$ $D)\frac{2^{x}}{\log 2} + c$ C) $x \log 2 e^{(x-1) \log 2} + c$ Answer: Option A **Explanation:** $e^{2\log x} = x^2 \& \int x^m dx = \frac{x^{m+1}}{m+1} + c.$ **20.** $\int \sin x \, dx =$ _____ A) $\cos x + c$ B) $\sin x + c$ $C) - \cos x + c$ D) None of these Answer: Option C

Explanation: By definition of integration for Trigonometric functions.

$21. \int \cos x \ dx = \underline{\qquad}.$		
A) $\cos x + c$	B) $\sin x + c$	
$C) - \cos x + c$	D) None of these	
Answer: Option B		
Explanation: By definition of integration for	r Trigonometric functions	
$22. \int \sec^2 x dx = \underline{\qquad}.$		
A) $\sec x + c$	B) 2. sec x + c	
C) $\frac{\sec^3 x}{3} + c$	D) $\tan x + c$	
Answer: Option D		
Explanation: By definition of integration for Trigonometric functions		
$23. \int \csc^2 x dx = \underline{\qquad}.$		
A) $\operatorname{cosec} x + c$	$B) - \cot x + c$	
C) $\frac{\csc^3 x}{3} + c$	D) 2. cosec x + c	
Answer: Option B		
Explanation: By definition of integration for	r Trigonometric functions	
24. $\int \sec x \cdot \tan x \cdot dx =$		
A) $\sec x + c$	B) $\sec x - \tan x + c$	
C) sec $x + \tan x + c$	D) $\tan x + c$	
Answer: Option A		
Explanation: By definition of integration for	r Trigonometric functions	
$25. \int \frac{\sin x}{\cos^2 x} \mathrm{d}x = \underline{\qquad}$	STD-1998	
A) cosec x + c	B) sec $x - tan x + c$	
C) $\sec x + c$	D) $\tan x + c$	
Answer: Option C	POLYTECHNIC	
Explanation: $\frac{\sin x}{\cos^2 x} = \sec x \cdot \tan x & \int \sec x \cdot \tan x \cdot dx = \sec x + c$		
$26. \int \operatorname{cosec} x \cdot \operatorname{cot} x \cdot dx = \underline{\qquad}$		
A) $-\csc x + c$ C) $\csc x + \cot x + c$ Answer: Option A Explanation: By definition of integration for	B) $\csc x - \cot x + c$ D) $\cot x + c$ r Trigonometric functions	
27. $\int \frac{\cos x}{\cos x} dx =$		

27. $\int \frac{\cos x}{\sin^2 x} dx = \underline{\qquad}$ A) $\cos x + \sin x + c$ C) $\cos x - \sin x + c$ Answer: Option B Explanation: $\frac{\cos x}{\sin^2 x} = \csc x \cdot \cot x$ B) $-\csc x + c$ D) $\cot x + c$ f $\csc x \cdot \cot x \cdot dx = -\csc x + c$ Page 30 of 81

28. $\int \tan x \, dx =$ _____. A) $\log|\tan x| + c$ B) $\operatorname{cosec} x + c$ C) $\log |\sec x| + c$ D) $\sec x + c$ Answer: Option C Explanation: By definition of integration for Trigonometric functions $29. \int \cot x \, dx = _$ A) $\log |\sin x| + c$ B) $\operatorname{cosec} x + c$ C) $\log |\operatorname{cosec} x| + c$ D) $\sec x + c$ Answer: Option A **Explanation:** By definition of integration for Trigonometric functions $30. \int \sec x \, dx = \underline{\qquad}.$ B) $\log |\sec x - \tan x| + c$ A) $\log|\sec x + \tan x| + c$ D) $\log \left| \tan \left(\frac{x}{2} - \frac{\pi}{4} \right) \right| + c$ C) $\log |\operatorname{cosec} x - \operatorname{cot} x| + c$ Answer: Option A **Explanation:** By definition of integration for Trigonometric functions 31. $\int \operatorname{cosec} x \, dx =$ _____ B) $\log |\operatorname{cosec} x + \operatorname{cot} x| + c$ A) $\log|\sec x + \tan x| + c$ D) $\log \left| \tan \left(\frac{x}{2} - \frac{\pi}{4} \right) \right| + c$ C) $\log |\operatorname{cosec} x - \operatorname{cot} x| + c$ Answer: Option C Explanation: By definition of integration for Trigonometric functions 32. $\int \sec x \, dx =$ _____ A) $\log \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + c$ B) $\log |\sec x - \tan x| + c$ D) $\log \left| \tan \left(\frac{x}{2} - \frac{\pi}{4} \right) \right| + c$ C) $\log |\operatorname{cosec} x - \operatorname{cot} x| + c$ Answer: Option A Explanation: By definition of integration for Trigonometric functions 33. $\int \operatorname{cosec} x \, dx =$ _____. A) $\log|\sec x + \tan x| + c$ B) $\log |\operatorname{cosec} x + \operatorname{cot} x| + c$ C) $\log \left| \tan \left(\frac{x}{2} - \frac{\pi}{4} \right) \right| + c$ D) $\log \left| \tan \left(\frac{x}{2} \right) \right| + c$ Answer: Option D

Explanation: By definition of integration for Trigonometric functions

34. $\int \log x \, dx =$ _____ A) $\frac{1}{v} + c$ B) x. $\log x + x + c$ C) x. $(\log x - 1) + c$ D) x. $(1 - \log x) + c$ Answer: Option B $u = \log x$ and v = 1 then by, $\int (uv)dx = u \int vdx - \int [d(u)/dx \int dv] dx$ Explanation: $\int (\log x.1) \, dx = \log x \int 1.dx - \int [d(\log x)/dx \int 1dx] \, dx$ 35. $\int \frac{1}{\sqrt{1-x^2}} \, dx =$ _____. A) $\sin^{-1} x + c$ B) $\cos^{-1} x + c$ C) $\sec^{-1} x + c$ D) $tan^{-1}x + c$ Answer: Option A **Explanation:** $\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\left(\frac{x}{a}\right) + c.$ 36. $\int \frac{1}{\sqrt{1-x^2}} \, dx =$ _____ A) $\operatorname{cosec}^{-1} x + c$ B) $-\cos^{-1}x +$ C) $\sec^{-1} x + c$ D) $\tan^{-1} x + c$ Answer: Option B Explanation: $\int \frac{dx}{\sqrt{a^2 - x^2}} = -\cos^{-1}\left(\frac{x}{a}\right) + c.$ 37. $\int \frac{dx}{x^2+1} =$ _____ A) $\cot^{-1} x + c$ B) $\cos^{-1} x + c$ C) $\sec^{-1} x + c$ D) $\tan^{-1} x + c$ Answer: Option D Explanation: By definition of integration for inverse Trigonometric functions

38.
$$\int \frac{1}{1+x^2} dx =$$
_____.
A) $-\cot^{-1}x + c$
B) $\cos^{-1}x + c$
C) $-\sec^{-1}x + c$
D) $-\tan^{-1}x + c$

Answer: Option A

Explanation: By definition of integration for inverse Trigonometric functions

39.
$$\int \frac{1}{x \cdot \sqrt{x^2 - 1}} \, dx = \underline{\qquad}$$

A) $\cot^{-1} x + c$
C) $\sec^{-1} x + c$
B) $\cos^{-1} x + c$
D) $\csc^{-1} x + c$

Answer: Option C

Explanation: By definition of integration for inverse Trigonometric functions

40.
$$\int \frac{1/x}{\sqrt{x^2 - 1}} \, dx =$$
_____.
A) $\sin^{-1} x + c$
B) $\cos^{-1} x + c$
C) $\sec^{-1} x + c$
D) $-\csc^{-1} x + c$

Answer: Option D

Explanation: By definition of integration for inverse Trigonometric functions

41.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} =$$

A) $\log |x + \sqrt{a^2 - x^2}| + c$
C) $\sin^{-1} \left(\frac{x}{a}\right) + c$
B) $\log |x - \sqrt{a^2 - x^2}| + c$
D) $\frac{1}{2a} \log \left|\frac{a - x}{a + x}\right| + c$

Answer: Option C

Explanation: By definition of integration for inverse Trigonometric functions

42.
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \underline{\qquad}$$

A) $\log |x + \sqrt{a^2 + x^2}| + c$
C) $\sin^{-1}\left(\frac{x}{a}\right) + c$
B) $\log |x - \sqrt{x^2 + a^2}| + c$
D) $\frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + c$

Answer: Option A

Explanation: By definition of integration for logarithmic functions

43.
$$\int \frac{dx}{\sqrt{x^2 - a^2}} =$$

A) $\log |x - \sqrt{x^2 - a^2}| + c$
C) $\sin^{-1}(\frac{x}{a}) + c$
B) $\log |x + \sqrt{x^2 - a^2}| + c$
D) $\frac{1}{2a} \log |\frac{x - a}{x + a}| + c$

Answer: Option B

Explanation: By definition of integration for logarithmic functions

44.
$$\int \frac{1}{a^2 - x^2} dx = \underline{\qquad}$$

A) $\frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + c$
B) $\frac{1}{2a} \log \left| \frac{a - x}{a + x} \right| + c$
C) $\sin^{-1} \left(\frac{x}{a} \right) + c$
D) $\frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + c$

Answer: Option A

Explanation: By definition of integration for logarithmic functions

45.
$$\int \frac{1}{x^2 - a^2} dx =$$

A) $\frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + c$
C) $\frac{1}{2a} \log \left| \frac{x + a}{x - a} \right| + c$
Answer: Option D

Answer: Option D

Explanation: By definition of integration for logarithmic functions

$$46. \int \frac{1}{x^2 + a^2} dx = \underline{\qquad}$$

$$A) \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + c \qquad B) \frac{1}{2a} \log \left| \frac{a - x}{a + x} \right| + c$$

$$C) \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + c \qquad D) \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + c$$

Answer: Option C

Explanation: By definition of integration for inverse Trigonometric functions

47.
$$\int \frac{f(x)'}{f(x)} dx =$$

A) $\log(f(x)) + c$
C) $f(x) + c$
B) $\log|f(x)| + c$
C) $f(x) + c$
Answer: Option A
Explanation: By definition of integration by substitution.
48.
$$\int \frac{f(x)'}{\sqrt{f(x)}} dx =$$

A) $\log(\sqrt{f(x)}) + c$
C) 2. $f(x) + c$
A) $\log(\sqrt{f(x)}) + c$
C) 2. $f(x) + c$
Answer: Option D
Explanation: By definition of integration by substitution.
49.
$$\int \frac{\sin x}{\cos x} dx =$$

A) $\log(\cos x) + c$
C) $\log|\sec x| + c$
A) $\log(\cos x) + c$
C) $\log|\sec x| + c$
B) $-\log|\cos x| + c$
D) Both B) & C)
Answer: Option D
Explanation: $\frac{\sin x}{\cos x} = \tan x$
50.
$$\int \frac{1}{x + 5} dx =$$

A) $\log(x) + 5 + c$
B) $\log|x + 5| + c$

A)
$$\log(x) + 5 + c$$

B) $\log|x + 5| + C$
C) $\frac{-1}{(x + 5)^2} + c$
D) None of These

Answer: Option B

51. $\int (\mathbf{x}^{m} + \mathbf{m}^{x} + \mathbf{m}^{m}) d\mathbf{x} =$ _____. A) m. $\mathbf{x}^{m-1} + \frac{\mathbf{m}^{x}}{\log m} + c$ B) $\frac{\mathbf{x}^{m+1}}{m+1} + \mathbf{m}^{x} \cdot \log m + 0 + c$ C) $\frac{\mathbf{x}^{m+1}}{m+1} + \mathbf{m}^{x} / \log m + \mathbf{m}^{m} \cdot \mathbf{x} + c$ D) None of These

Answer: Option C

Explanation:
$$\int x^m dx = \frac{x^{m+1}}{m+1} + c$$
. and $\int a^x dx = \frac{a^x}{\log a} + c$

52. $\int \frac{3x}{\sqrt{x^2-1}} dx =$ _____ B) $\frac{3}{2}\sqrt{x^2-1}$ +c A) $3\sqrt{x^2-1} + c$ D) $\frac{3}{2} \log \sqrt{x^2 - 1} + c$ C) $2\sqrt{x^2-1} + c$ Answer: Option A **Explanation:** $u = \sqrt{x^2 - 1}$, convert dx into du 53. Evaluate: $\int \frac{dx}{2x + 1} =$ _____. B) $\frac{1}{2} \log |2x + 1| + c$ A) $\log(2x) + 1 + c$ C) $\log \sqrt{2x + 1} + c$ D) Both B) & C) Answer: Option D **Explanation:** $\int \frac{1}{x} dx = \log x + c \text{ AND}$ $\frac{1}{2} \log x = \log \sqrt{x}$ 54. Evaluate: $\int \left(\frac{1}{x^2+1}+e^{2x}\right) dx =$ _____ B) $\tan^{-1} x + \frac{e^{2x}}{2} + c$ A) $\tan^{-1} x + e^{2x} + c$ C) $\tan x + \frac{e^{2x}}{2} + c$ D) $\tan x + e^{2x} + c$ Answer: Option B **Explanation:** $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + c$. and $\int e^{mx} dx = \frac{e^{mx}}{m} + c$ 55. Evaluate: $\int \frac{dx}{3x+5} =$ _____ B) $\frac{1}{2} \log |3x + 5| + c$ A) $\log(3x) + 5 + c$ C) $\tan^{-1}\left(\frac{3x}{r}\right) + c$ D) Both B) & A) Answer: Option B **Explanation:** $\int \frac{1}{x} dx = \log x$ 56. Evaluate: $\int \frac{dx}{3x^2+4} =$ _____ B) $\frac{1}{2} \tan^{-1} \left(\frac{3x}{4} \right) + c$ A) $\tan^{-1}\left(\frac{3x}{4}\right) + c$ D) $\frac{1}{2\sqrt{2}} \tan^{-1}\left(\frac{\sqrt{3}x}{2}\right) + c$ $C)\frac{1}{2}\log(3x^2+4)+c$ Answer: Option B **Explanation:** Substitute $u = \frac{\sqrt{3}x}{2}$ AND $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + c.$

57. Evaluate:
$$\int \frac{dx}{\sqrt{4-9x^2}} =$$
_______.
A) $\frac{1}{3} \sin^{-1} \left(\frac{3x}{2}\right) + c$
B) $\frac{1}{2} \tan^{-1} \left(\frac{3x}{2}\right) + c$
C) $\frac{1}{3} \log(\sqrt{4-9x^2}) + c$
D) $\frac{1}{6} \tan^{-1} \left(\frac{3x}{2}\right) + c$
Answer: Option A
Explanation: Substitute $u = \frac{3x}{2}$ AND $\int \frac{dx}{\sqrt{a^2 + x^2}} = \sin^{-1} \left(\frac{x}{a}\right) + c$.
58. Evaluate: $\int \frac{1}{3x^2 + 5} dx =$ _______.
A) $\frac{1}{\sqrt{5}} \tan^{-1} \left(\frac{\sqrt{3x}}{\sqrt{5}}\right) + c$
B) $\frac{1}{\sqrt{15}} \tan^{-1} \left(\frac{\sqrt{3x}}{\sqrt{5}}\right) + c$
C) $\frac{1}{\sqrt{5}} \tan^{-1} \left(\frac{\sqrt{3x}}{\sqrt{5}}\right) + c$
D) None of These
Answer: Option B
Explanation: $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + c$.
59. Evaluate: $\int \frac{dx}{25 - 9x^2} =$ _______.
A) $\frac{1}{3} \sin^{-1} \left(\frac{3x}{5}\right) + c$
D) $\frac{1}{15} \log \left|\frac{3x - 5}{3x + 5}\right| + c$
C) $\frac{1}{15} \log \left|\frac{5 - 3x}{5 + 3x}\right| + c$
D) $\frac{1}{30} \log \left|\frac{5 + 3x}{5 - 3x}\right| + c$
Answer: Option D
Explanation: $\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left|\frac{a + x}{a - x}\right| + c$.
60. Evaluate: $\int \frac{dx}{9x^2 - 16} =$ _______.
A) $\frac{1}{24} \log \left|\frac{3x + 4}{3x + 4}\right| + c$
D) $\frac{1}{24} \log \left|\frac{3x - 4}{3x + 4}\right| + c$
Answer: Option B
Explanation: $\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left|\frac{x - a}{x + a}\right| + c$.
61. Evaluate: $\int \frac{6x + 9}{4x^2 + 3x + 2} + c$
B) $\log(x^2 + 3x + 2) + c$
A) $3 \cdot \log(x^2 + 3x + 2) + c$
B) $\log(x^2 + 3x + 2) + c$
C) $3 \cdot (\log(x + 2) + \log(x + 1)] + c$
D) Both A) & C)
Answer: Option D
Explanation: $\int \frac{f(x)'}{f(x)'} dx = \log(f(x)) + c$. and $\log(u \cdot v) = \log(u) + \log(v)$

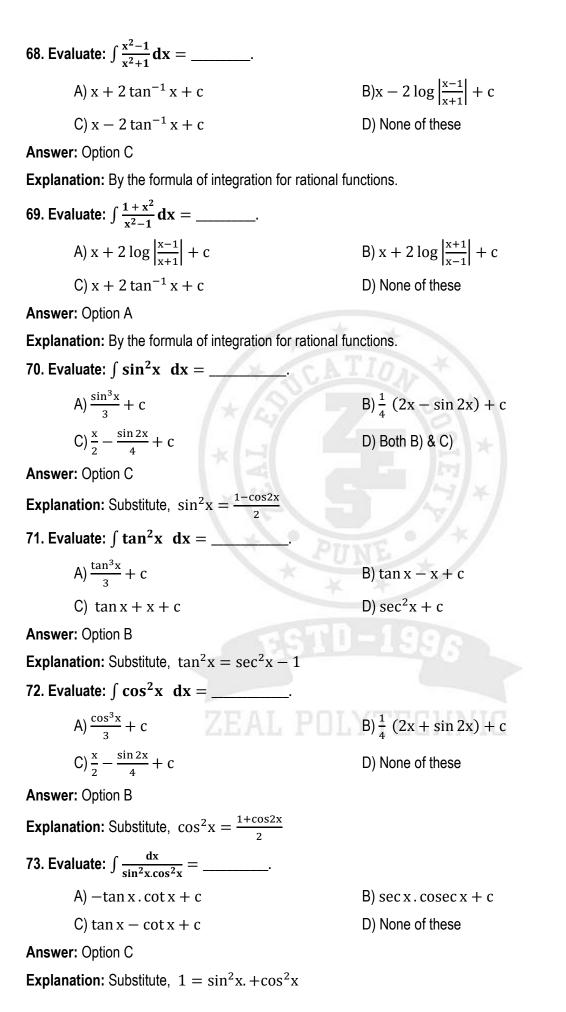
62. Evaluate: $\int \sin(3x + 5) \, dx =$ _____ A) $\cos(3x + 5) + c$ B) - cos(3x + 5) + cD) $\frac{-\cos(3x+5)}{2} + c$ $C) - 3.\cos(3x + 5) + c$ Answer: Option D **Explanation:** $\int \sin x \, dx = -\cos x + c$ 63. Evaluate: $\int e^{2x-1} dx =$ _____. B) $\frac{e^{2x-1}}{2} + c$ A) $e^{2x-1} + c$ C) 2. $e^{2x-1} + c$ D) None of these Answer: Option B **Explanation:** By definition of for power of e. 64. Evaluate: $\int 3^{2x-1} dx =$ _____ B) $\frac{3^{2x-1}}{2} + c$ A) $3^{2x-1} \log 3 + c$ D) $\frac{3^{2x-1}}{2 \log 3} + c$ C) 2. $3^{2x-1} \log 3 + c$ Answer: Option D **Explanation:** By the formula for a^x 65. Evaluate: $\int (1-x)^{10} dx =$ B) $\frac{-1}{11}(1-x)^{11} + c$ A) 10. $(1 - x)^9 + c$ C) $\frac{1}{10}(1-x)^{10} + c$ D) $\frac{(1-x)^{11}}{11} + c$ Answer: Option B **Explanation:** By the formula for x^m 66. Evaluate: $\int \frac{x-1}{x+1} dx =$ _____ A) $x - 2 \log(x + 1) + c$ $B) x - \log(x+1) + c$ D) None of these C) $\log(x + 1) + c$ Answer: Option A

Explanation: By the formula of integration for rational functions.

67. Evaluate:
$$\int \frac{2x+5}{2x-3} dx =$$
_____.
A) x - 4 log(2x - 3) + c
C) log(2x - 3) + c
D) log(2x + 5) + c

Answer: Option B

Explanation: By the formula of integration for rational functions.



Page 38 of 81

74. Evaluate: $\int \frac{\cos 2x}{\sin^2 x \cos^2 x} dx = \underline{\qquad}.$	
Shi kees k	
A) $-(\tan x + \cot x) + c$	B) $\sec x \cdot \csc x + c$
C) $\tan x + \cot x + c$	D) $\cot x - \tan x + c$
Answer: Option A Explanation: Use formula $\cos 2x = \cos^2 x - \sin^2 x$	
•	
$75. \int \sin^3 x dx = \underline{\qquad}.$	1
A) $\frac{\sin^4 x}{4} + c$	B) $\frac{1}{12}$ (-9 cos x + cos 3x) + c
C) $\frac{1}{12}$ (9 cos x - cos 3x) + c	$D)\frac{\sin^4 x}{4\cos x} + c$
Answer: Option B	
Explanation: Substitute, $\sin^3 x = \frac{3\sin x - \sin 3x}{4}$	
76. $\int \cos^3 x dx =$	
A) $\frac{\cos^4 x}{4} + c$	B) $\frac{1}{12}$ (-9 sin x + sin 3x) + c
C) $\frac{1}{12}$ (9 sin x + sin 3x) + c	$D)\frac{\cos^4 x}{4\sin x} + c$
Answer: Option C	
Explanation: Substitute, $\cos 3x = 4 \cos^3 x - 3 \cos x$	
77. Evaluate: $\int \sin x^{\cdot} dx = $	
A) $-\cos x^{\cdot} + c$	B) $-\frac{180}{\pi}\cos x^{\cdot} + c$
$C) - \frac{\pi}{180} \cos x^{\cdot} + c$	D) $\cos x + c$
Answer: Option A	-1900
Explanation: $\int \sin x dx = -\cos x + c$ and $x^{\circ} =$	<u>π.x</u> 180
78. Evaluate: $\int \sec^2 x^{\cdot} dx =$	
A) $\tan x^2 + c$	B) $\left(\frac{180}{\pi}\right) \tan x + c$
C) $\left(\frac{\pi}{180}\right)$ tan x' + c	D) None of these
Answer: Option A	
Explanation: $\int \sec^2 x dx = \tan x + c \text{ and } x^\circ = \frac{1}{1}$	т. <u>х</u> 80
79. If $\int f[\phi(x)] \cdot \phi'(x) dx$ then which of the following	ng method is applicable.
A) Substitution Method	B) Partial fraction Method
C) Integration By parts	D) None of these
Answer: Option A	
Explanation: Definition of Substitution method.	

80. If $\int f[\emptyset(x)] \cdot \emptyset'(x) dx$ then the proper substitu	tion is	
$A) \phi'(x) = t$	$B)\emptyset(\mathbf{x}) = t$	
$C)f[\phi(x)]=t$	D) None of these	
Answer: Option B		
Explanation: Definition of Substitution method.		
81. Evaluate: $\int e^{e^x} e^x dx = $		
A) $e^{x} + c$	B) e ^{ex}	
C) $e^{e^x} + c$	D) None of these	
Answer: Option C		
Explanation: By substitution method, put $e^x = t$		
82. Evaluate: $\int \frac{1}{x \log x} dx = $		
A) x. $\log x + c$	$B)\log(\log x) + c$	
C) $\log x + c$	D) None of these	
Answer: Option B		
Explanation: By substitution method.		
83. Evaluate: $\int \frac{\cos(\log x)}{x} dx = $		
A) $\sin(\log x) + c$	B) $\frac{1}{\sin(\log x)} + c$	
$C) - \cos(\log x) + c$	D) None of these	
Answer: Option A		
Explanation: By substitution method, put $\log t = t$		
84. Evaluate: $\int \frac{\cos x}{\sin^2 x + 1} dx = $		
A) $\log(\sin x) + c$	$B)\log(\cos x) + c$	
C) $\tan^{-1}(\sin x) + c$	D) None of these	
Answer: Option C		
Explanation: By substitution method, put $sinx = t$		
85. Evaluate: $\int \frac{3^{\tan^{-1}x}}{x^2+1} dx = $		
A) $3^{\tan^{-1}x} + c$	$B)\frac{3^{\tan^{-1}x}}{\log 3} + c$	
C) $3^{\tan^{-1}x} \cdot \log 3 + c$	D) None of these	
Answer: Option B		

Explanation: By substitution method, put $tan^{-1}x = t$

86. Evaluate: $\int x^{n-1} \cdot \cos(x^n) \, dx =$ _____ A) $\frac{\sin(x^n)}{x} + c$ B) $\frac{\cos(x^n)}{r} + c$ C) $-\frac{\sin(x^n)}{n} + c$ $D) - \frac{\cos(x^n)}{n} + c$ Answer: Option A **Explanation:** By substitution method, put $x^n = t$ 87. If $\int \frac{e^{x}(x+1)}{cos^{2}(e^{x}x)} dx$ then to solve this integration the standard substitution is _____ A) $\cos^2 x = t$ B) $e^x = t$ C) $\cos^2(e^x, x) = t$ D) $e^x \cdot x = t$ Answer: Option D Explanation: By substitution method 88. If $\int \frac{e^{x}(x-1)}{x^{2} \sin^{2}(\frac{e^{x}}{x})} dx$ then to solve this integration the standard substitution is _____ B) $\sin^2\left(\frac{e^x}{x}\right) = t$ A) $\sin^2 x = t$ C) $\frac{e^x}{x} = t$ D) $e^{x}(x-1) = t$ Answer: Option C Explanation: By substitution method 89. Evaluate: $\int \frac{\sec^2 x}{3 + \tan x} dx =$ _____ A) $\log(3 + \tan x) + c$ B) $\log(\tan x) + c$ C) $\log(\sec^2 x) + c$ D) None of these Answer: Option A **Explanation:** By substitution method, put $\tan x = t$ 90. If $\int \frac{\sec x \cdot \csc x}{\log(\tan x)} dx$ then to solve this integration the standard substitution is _____ $B) \log(\tan x) = t$ A) $\tan x = t$ D) None of these C) $\sec x \cdot \csc x = t$ Answer: Option A Explanation: By substitution method 91. If $\int \frac{\log[\tan(\frac{x}{2})]}{\sin x} dx$ then to solve this integration the standard substitution is _____ A) $\tan\left(\frac{x}{2}\right) = t$ B) $\frac{x}{2} = t$ D) $\log \left[\tan \left(\frac{x}{2} \right) \right] = t$ C) $\sin x = t$ Answer: Option B

Explanation: By substitution method

92. If $\int \frac{dx}{dx^2 + bx + c}$ then the formula for Third Term is_____ A) T. T. = $\left(\frac{1}{2} \times \text{ coefficient of } x\right)^2$ B) T. T. = $\left(\frac{1}{2} \times \text{coefficient of } \mathbf{x}\right)$ C) T. T. = $\left(\frac{1}{2} \times a\right)^2$ D) T. T. = $\left(\frac{1}{2} \times b\right)$ Answer: Option A **Explanation:** By Integration of Rational functions. 93. If $\int \frac{dx}{x^2+4x+5}$ then the Third Term is = _____ B) 4 A) 2 D) $\frac{1}{2}$ C) 5 Answer: Option B **Explanation:** T.T. = $\left(\frac{1}{2} \times \text{coefficient of x}\right)^2$ 94. To solve $\int \frac{dx}{2+3\sin x}$ the standard Substitutions are A) $\tan\left(\frac{x}{2}\right) = t$, $dx = \frac{2dt}{1+t^2}$, $\sin x = \frac{1-t^2}{1+t^2}$ B) $\tan\left(\frac{x}{2}\right) = t$, $dx = \frac{2dt}{1+t^2}$, $\sin x = \frac{2t}{1+t^2}$ C) $\tan(x) = t$, $dx = \frac{dt}{1+t^2}$, $\sin x = \frac{2t}{1+t^2}$ D) $\tan(x) = t$, $dx = \frac{dt}{1+t^2}$, $\sin x = \frac{1-t^2}{1+t^2}$ Answer: Option A **Explanation:** By substitution method 95. To solve $\int \frac{dx}{4-5\cos 2x}$ the standard Substitutions are_____ A) 2x = t, $dx = \frac{dt}{dt}$ B) x= t, dx = $\frac{dt}{dt}$ D) x = t, dx = dtC) 2x = t, dx = dtAnswer: Option B Explanation: By substitution method 96. Identify the correct method from following to solve $\int \frac{1}{x + \sqrt{x}} dx$ A) Direct method of Integration B) Method of Substitution C) Method of Partial Fraction D) Method of By-parts Answer: Option B **Explanation:** By substitution method 97. Evaluate: $\int \frac{dx}{9 \cos^2 x + 4 \sin^2 x} =$ _____ A) $\frac{1}{6} \tan^{-1} \left(\frac{2t}{6} \right) + c$ B) $\frac{1}{6} \tan^{-1} \left(\frac{2 \cos x}{6} \right) + c$ C) $\frac{1}{6} \tan^{-1} \left(\frac{2 \tan x}{2} \right) + c$ D) None of these Answer: Option C

Explanation: By substitution method

98. Identify the correct formula for $\int {f u}.{f v}d{f x}=$	
A) u. $\int v dx - \int \left(\frac{du}{dx} \int v dx\right) dx$	B) u. $\int v dx + \int \left(\frac{du}{dx} \int v dx\right) dx$
C) v. $\int u dx - \int \left(\frac{dv}{dx} \int u dx\right) dx$	D) v. $\int u dx + \int \left(\frac{dv}{dx} \int u dx\right) dx$
Answer: Option A	
Explanation: Rule of Integration by parts.	
99. From "LIATE" rule 'l' indicates	
A) Logarithmic function	B) Inverse Trigonometric functions
C) Algebraic function	D) Exponential function
Answer: Option B	
Explanation: Integration by parts	
100. From "LIATE" rule 'L' indicates	
A) Logarithmic function	B) Inverse Trigonometric functions
C) Algebraic function	D) Exponential function
Answer: Option A	
Explanation: Integration by parts	
101. From "LIATE" rule 'E' indicates	
A) Logarithmic function	B) Inverse Trigonometric functions
C) Algebraic function	D) Exponential function
Answer: Option D	
Explanation: Integration by parts	
102. If $\int e^{3x} \cos 2x dx$ then according to "LIATE	" rule $\mathbf{u} = __\& \mathbf{v} = __$
A) $u = e^{3x}$, $v = \cos 2x$	B) $u = \cos 2x$, $v = e^{3x}$
C) $u = \cos 3x, v = e^{2x}$	D) none of these
Answer: Option C	
Explanation: Integration by parts	
103. According to "LIATE" rule Logarithmic function	and Exponential functions are always
respectively.	
A) u = logarithmic, v = Exponential	B) u = Exponential, v = Logarithmic
C) u = Exponential	D) v = Logarithmic
Answer: Option A	
Explanation: Integration by parts	

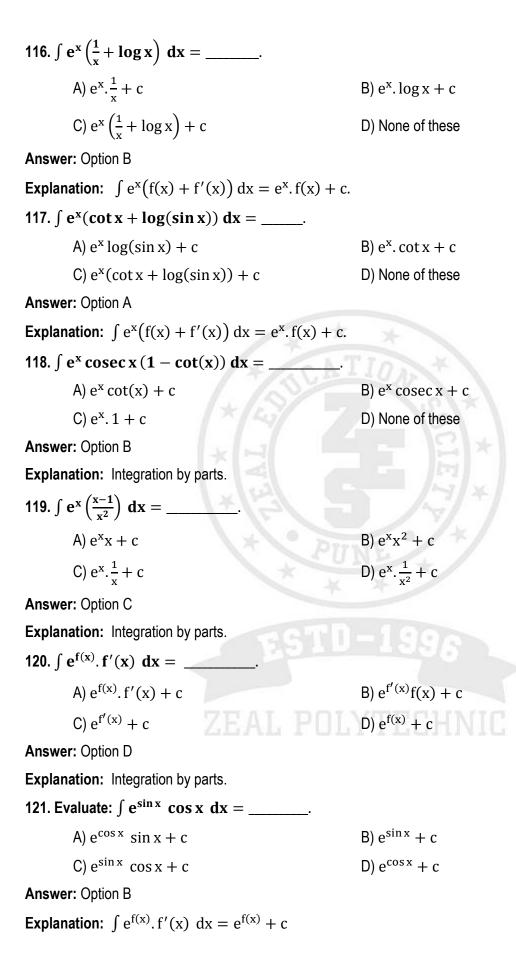
104. Evaluate: $\int \mathbf{x} \cdot \sin \mathbf{x} d\mathbf{x} =$	
A) x. $\cos x + \sin x + c$	$B) -x.\cos x + \sin x + c$
C) $-x \cdot \cos x - \sin x + c$	$D) - x. \sin x - \cos x + c$
Answer: Option B	
Explanation: Integration by parts ("LIATE" rule)	
105. Evaluate: $\int \mathbf{x} \cdot \sin 2\mathbf{x} d\mathbf{x} = $	
A) $-x \cos 2x + \sin 2x + c$	B) $-\frac{x}{2}$. cos 2x $-\frac{1}{4}$ sin 2x +
C) $-\frac{x}{2}$. cos 2x $+\frac{1}{4}$ sin 2x + c	D) $-\frac{x}{2}$. sin 2x $+\frac{1}{4}$ cos 2x $+$ c
Answer: Option B	
Explanation: Integration by parts ("LIATE" rule)	
106. Evaluate: $\int \mathbf{x} \cdot \mathbf{e}^{\mathbf{x}} d\mathbf{x} =$	
A) $e^{x}(x-1) + c$	B) $e^{x}(x+1) + c$
C) x. $(e^x - 1) + c$	D) x. $(e^x + 1) + c$
Answer: Option A	
Explanation: Integration by parts ("LIATE" rule)	
107. Evaluate: $\int x^2 e^{3x} dx =$	
A) $\frac{e^{3x}}{27}(9x^2+6x+2)+c$	B) $\frac{e^{3x}}{27}(9x^2 + 6x - 2) + c$
C) $e^{3x}(9x^2 + 6x + 2) + c$	$D)\frac{e^{3x}}{27}(9x^2 - 6x + 2) + c$
Answer: Option D	
Explanation: Integration by parts ("LIATE" rule)	
108. Evaluate: $\int e^{ax} \cos bx dx = $	
A) $\frac{e^{ax}}{a^2 + b^2}$ (a cos bx + b sin bx) + c	$B)\frac{\mathrm{e}^{\mathrm{ax}}}{\mathrm{a}^2-\mathrm{b}^2}(\mathrm{a}\cos\mathrm{bx}+\mathrm{b}\sin\mathrm{bx})+\mathrm{c}$
C) $\frac{e^{ax}}{a^2 + b^2}$ (a sin bx – b cos bx) + c	$D)\frac{e^{ax}}{a^2-b^2}(a\sin bx - b\cos bx) + c$
Answer: Option A	
Explanation: Integration by parts ("LIATE" rule)	
109. Evaluate: $\int e^{ax} \sin bx dx = $	
ax	ax

$$A) \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx) + c \qquad B) \frac{e^{ax}}{a^2 - b^2} (a \cos bx + b \sin bx) + c \\ C) \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + c \qquad D) \frac{e^{ax}}{a^2 - b^2} (a \sin bx - b \cos bx) + c$$

Answer: Option C

Explanation: Integration by parts ("LIATE" rule)

110. Evaluate: $\int e^{2x} \cos 3x \, dx =$ _____. A) $\frac{e^{2x}}{12}(3\cos 2x + 2\sin 3x) + c$ B) $\frac{e^{2x}}{13}(2\cos 3x + 3\sin 3x) + c$ $C)\frac{e^{2x}}{12}(2\cos 3x - 3\sin 3x) + c$ D) $\frac{e^{2x}}{13}$ (2 sin 3x - 3 cos 3x) + c Answer: Option B **Explanation:** $\int e^{ax} \cos bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx) + c$ 111. Evaluate: $\int e^{3x} \sin 4x \, dx =$ _____. A) $\frac{e^{3x}}{2^{c}}(3\cos 4x + 4\sin 3x) + c$ B) $\frac{e^{3x}}{2^{5}}(4\cos 3x + 3\sin 3x) + c$ D) $\frac{e^{3x}}{25}$ (3 sin 4x - 4 cos 4x) + c $C)\frac{e^{3x}}{2z}(4\cos 3x - 3\sin 3x) + c$ Answer: Option D **Explanation:** $\int e^{ax} \sin bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + c$ 112. Evaluate: $\int \frac{dx}{x(x+1)} =$ _____ B) $\log \left| \frac{x+1}{x} \right| + c$ A) $\log \left| \frac{x}{x+1} \right| + c$ C) $\log \left| \frac{x}{2x+1} \right| + c$ D) $\log \left| \frac{3x}{2x+1} \right| + c$ Answer: Option A Explanation: Integration by partial fractions. 113. Evaluate: $\int \frac{1}{(x+3).(x+2)} =$ A) $\log \left| \frac{x+3}{x+2} \right| + c$ B) $\log \left| \frac{x+2}{x+2} \right| + c$ D) $\log \left| \frac{3x+1}{2x+1} \right| + c$ C) $\log \left| \frac{x+2}{2x+2} \right| + c$ Answer: Option B Explanation: Integration by partial fractions. 114. $\int e^{x} (f(x) + f'(x)) dx =$ A) $e^x f(x) + c$ B) $e^x f'(x) + c$ C) $e^{x}(f(x) + f'(x)) + c$ D) None of these Answer: Option A Explanation: Integration by parts. 115. $\int e^{x}(\sin x + \cos x) dx =$ _____. A) $e^x \cdot \cos x + c$ B) $e^x \cdot \sin x + c$ C) $e^{x}(\sin x + \cos x) + c$ D) None of these Answer: Option B **Explanation:** $\int e^{x} (f(x) + f'(x)) dx = e^{x} f(x) + c.$



ZEAL POLYTECHNIC, PUNE

NARHE | PUNE -41 | INDIA

Question Bank for Multiple Choice Questions

Program: Diploma in Computer Engineering	Program Code:-CO
Scheme:-I	Semester:-II
Course:- Applied Mathematics	Course Code:-22224
03 – Applications of Definite Integration	Marks: - 08
Content of Chapter: -	* *
3.1 Definite Integration:	
a) Simple examples	
b) Properties of definite integral (without proof)	and simple examples.
3.2 Applications of integration:	
a) Area under the curve.	
b) Area between two curves.	
c) Volume of revolution.	
1. Definite Integration has value.	UNE *
A) Indefinite	B) Unique
C) Variable	D) Not Defined
Answer: Option B	U-1996
Explanation: By definition of Definite Integration.	
2. If $\int f(x) dx = F(x) + c$ then $\int_a^b f(x) dx = $	
A) $F(a) + F(b)$	B) F(a) - F(b)
C)F(b) + F(a)	D) $F(b) - F(a)$
Answer: Option D	
Explanation: By definition of Definite Integration.	
3. Evaluate: $\int_{4}^{9} \frac{dx}{\sqrt{x}} = $	
A) 2	B) 3
C) -2	D) -3
Answer: Option A	, -
Explanation: Using Formula $\int \frac{f'(x)}{\sqrt{f(x)}} dx = 2 \cdot \sqrt{f(x)}$	$\overline{x}) + c$

4. Evaluate: $\int_{2}^{4} \frac{dx}{2x+3} =$ _____ A) $\frac{1}{2} \log \left(\frac{7}{11} \right)$ B) $\frac{1}{2} \log \left(\frac{7}{11} \right) + c$ $C)\frac{1}{2}\log\left(\frac{11}{7}\right)$ $D)\frac{1}{2}\log\left(\frac{11}{7}\right)+c$ Answer: Option C **Explanation:** Using Formula $\int \frac{f'(x)}{f(x)} dx = \log f(x) + c$ 5. Evaluate: $\int_{1}^{2} \frac{dx}{3x-2} =$ _____. A) $\frac{1}{3}$. log 3 B) $\frac{1}{3}$.log4 C) $\log 4$ D) None of these Answer: Option B **Explanation:** Using Formula: $\int \frac{f'(x)}{f(x)} dx = \log f(x) + c$ 6. Evaluate: $\int_{0}^{\log_{e} 2} e^{2x} dx =$ _____ A) $\frac{2}{3}$ B) $\frac{1}{2}$ C) $\frac{3}{2}$ D) None of these Answer: Option C **Explanation:** Using Formula: $\int e^{ax} dx = \frac{e^{ax}}{a} + c$ 7. Evaluate: $\int_0^{\pi} \sin 3\theta \, d\theta =$ _____ A) $\frac{2}{3}$ B) $\frac{1}{2}$ C) $\frac{3}{2}$ D) None of these Answer: Option A **Explanation:** Using Formula: $\int \sin ax \, dx = \frac{-\cos ax}{a} + c$ 8. Evaluate: $\int_0^1 \frac{1}{\sqrt{1-x^2}} dx =$ A) 0 B) 1 C) $\frac{\pi}{2}$ D) π Answer: Option C

Explanation: Using Formula: $\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + c$

9. Evaluate: $\int_{0}^{\frac{\pi}{2}} e^{\sin x} \cos x dx =$	·
A) e	B) 1
C) e — 1	D) e + 1
Answer: Option C	
Explanation: Using substitution Method.	
10. Evaluate: $\int_0^1 e^x x dx = $	
A) e	B) 1
C) e — 1	D) e + 1
Answer: Option B	
Explanation: Using Formula: $\int u \cdot v dx = u$.	$\int v dx - \int \left(\frac{du}{dx} \int v dx \right) dx$
11. Evaluate: $\int_{1}^{e} \log_{e} x dx = $	
A) e	B) e — 1
C) 1	D) e + 1
Answer: Option C	
Explanation: Using Formula: $\int \log x dx = x$	$d_{x}(\log x - 1) + c$
12. Evaluate: $\int_{-1}^{1} \frac{dx}{x^2+1} = $	
Α) π	B) $\frac{\pi}{4}$
C) $\frac{\pi}{2}$	D) 1
Answer: Option C	
Explanation: Using Formula: $\int \frac{dx}{x^2+1} = \tan^{-2}$	1x + c 190
13. Evaluate: $\int_{0}^{1} x^{2} e^{x} dx =$	
A) e + 2	В) е
C) $e - 1$ ZEAL	D) e – 2
Answer: Option D	
Explanation: Using Formula: $\int u \cdot v dx = u$.	$\int v dx - \int \left(\frac{du}{dx} \int v dx\right) dx$
14. Evaluate: $\int_{1}^{e} \frac{\log_{e} x}{x} dx = \underline{\qquad}.$	
A) e	B) $\frac{1}{2}$
C) $\frac{1}{2}$	D) none of these
e	
Answer: Option B	

Explanation: Using substitution Method.

15. Evaluate: $\int_0^1 \frac{x. dx}{x+1} = $		
A) 1	B) 0	
C) 1 – log 2	D) log 2	
Answer: Option C		
Explanation: Using Formula: $\int \frac{f'(x)}{f(x)} dx = \log f(x) + $	c	
16. If the limits of Definite Integration are Identical th	en value of Definite Integration is equal to	
A) 1	B) 0	
C) Upper Limit	D) None of these	
Answer: Option B		
Explanation: Using Property of Integration.		
17. Evaluate: $\int_a^a f(x) dx = $		
A) 1	В) 0	
C) a	D) None of these	
Answer: Option B		
Explanation: Using Property of Integration.		
18. Evaluate: $\int_{2}^{2} x^{2} dx =$		
A) 1	B) 0	
C) 2	D) None of these	
Answer: Option B		
Explanation: Using Property of Integration. $\int_a^a f(x) dx$	x = 0.	
19. Value of Definite Integration is independent of ch	noice of	
A) Variable	B) Limits	
C) Functions	D) None of these	
Answer: Option A		
Explanation: Using Property of Integration		
20. Value of Definite Integration is dependent of cho	ice of	
A) Variable	B) Limits	
C) Functions	D) None of these	
Answer: Option B		
Explanation: Using Property of Integration		

21. If $\int_{1}^{3} x \, dx = 4$ then $\int_{1}^{3} p \, dp =$ _____ A) 3 B) 1 C) 2 D) 4 Answer: Option D **Explanation:** Using Property of Integration 22. If the limits of Definite Integration are interchanged then the value of the definite integration is_ A) equal to zero B) changes by sign only C) same D) cannot defined. Answer: Option B Explanation: Using Property of Integration 23. $\int_{a}^{b} f(x) dx =$ _____. $B) - \int_{a}^{b} F(x) dx$ A) $-\int_{a}^{b} f(x) dx$ C) $-\int_{b}^{a} f(x) dx$ D) None of these Answer: Option C **Explanation:** Using Property of Integration $\int_a^b f(x) dx = -\int_b^a f(x) dx$ 24. If $\int_2^3 x \, dx = 2.5$ then $\int_3^2 x \, dx =$ _____. D) None of these B) -2.5 A) 2.5 C) 1 Answer: Option B **Explanation:** Using Property of Integration $\int_a^b f(x) dx = - \int_b^a f(x) dx$ 25. If $a \le c \le b$ i.e. 'c 'is the any point in the interval [a, b], then $\int_a^b f(x) dx = __+ \int_c^b f(x) dx$ A) $\int_{a}^{c} f(x) dx$ B) $\int_{a}^{b} f(x) dx$ D) None of these C) $\int_{a}^{b} f(x) dx$ Answer: Option B **Explanation:** Using Property of Integration: If $a \le c \le b$ i.e. 'c 'is the any point in the interval [a, b], then $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$ **26.** If $0 \le f(x) \le g(x)$ for all $x \in [a, b]$, then _____

 $\begin{array}{lll} \mathsf{A} & \int_{a}^{b} f(x) \ dx < & \int_{a}^{b} g(x) \ dx & \\ \mathsf{C} & \int_{a}^{b} f(x) \ dx \ge & \int_{a}^{b} g(x) \ dx & \\ \end{array} \\ \begin{array}{lll} \mathsf{B} & \int_{a}^{b} f(x) \ dx > & \int_{a}^{b} g(x) \ dx & \\ \mathsf{D} & \int_{a}^{b} f(x) \ dx \le & \int_{a}^{b} g(x) \ dx & \\ \end{array}$

Answer: Option D

Explanation: Using Property of Integration:

27. If $f(x) = \frac{1}{x}$ and g(x) = x both defined on the interval [2, 3] then_ A) $\int_{2}^{3} \frac{1}{x} dx < \int_{2}^{3} x dx$ B) $\int_{2}^{3} \frac{1}{x} dx > \int_{2}^{3} x dx$ C) $\int_{2}^{3} \frac{1}{x} dx \ge \int_{2}^{3} x dx$ D) $\int_{2}^{3} \frac{1}{x} dx \leq \int_{2}^{3} x dx$ Answer: Option A **Explanation:** Using Property of Integration: If $0 \le f(x) \le g(x)$ for all $x \in [a, b]$, then $\int_{a}^{b} f(x) dx \leq \int_{a}^{b} g(x) dx$ 28. $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(\underline{\qquad}) dx$ A) a – x B) b - xC) a + b - xD) None of these Answer: Option C Explanation: Property of Integration **29.** $\int_0^a f(x) dx = \int_0^a f(\underline{\qquad}) dx$ A) a – x B) b - xC) a + b - xD) None of these Answer: Option A Explanation: Property of Integration 30. Evaluate: $\int_0^3 \frac{\sqrt{3-x}}{\sqrt{3-x} + \sqrt{x}} dx =$ B) $\frac{1}{2}$ A) 3 C) $\frac{3}{2}$ D) None of these Answer: Option C **Explanation:** Using Property of Integration $\int_0^a f(x) dx = \int_0^a f(a-x) dx$ 31. Evaluate: $\int_{\pi/6}^{\pi/3} \sin^2 x \, dx =$ _____. B) $\frac{\pi}{\frac{2}{\pi}}$ D) $\frac{\pi}{\frac{12}{\pi}}$ A) 0 C) $\frac{\pi}{3}$ Answer: Option D **Explanation:** Using Property of Integration: $\int_a^b f(x) dx = \int_a^b f(a + b - x) dx$ 32. Evaluate: $\int_{\pi/c}^{\pi/3} \cos^2 x \, dx =$ _____. B) $\frac{\pi}{12}$ D) $\frac{\pi}{c}$ A) 0 C) $\frac{\pi}{3}$ Answer: Option B **Explanation:** Using Property of Integration: $\int_a^b f(x) dx = \int_a^b f(a + b - x) dx$ Page 52 of 81

33. Evaluate: $\int_0^{\pi/2} \sin^2 x \, dx =$ _____ B) $\frac{\pi}{4}$ A) 0 C) $\frac{\pi}{3}$ D) $\frac{\pi}{12}$ Answer: Option B **Explanation:** Using Property of Integration $\int_0^a f(x) dx = \int_0^a f(a-x) dx$ 34. Evaluate: $\int_0^{\pi/2} \cos^2 x \, dx =$ _____ B) $\frac{\pi}{12}$ A) 0 C) $\frac{\pi}{2}$ D) $\frac{\pi}{4}$ Answer: Option D **Explanation:** Using Property of Integration $\int_0^a f(x) dx = \int_0^a f(a - x) dx$ 35. Evaluate: $\int_0^4 \frac{\sqrt[3]{x+5}}{\sqrt[3]{x+5} + \sqrt[3]{9-x}} dx =$ _____ A) 2 B) 4 D) 9 C) 5 Answer: Option A **Explanation:** Using Property of Integration $\int_0^a f(x) dx = \int_0^a f(a - x) dx$ 36. Evaluate: $\int_0^{\pi/2} \frac{dx}{1 + \sqrt[3]{\cot x}} = -$ B) $\frac{\pi}{12}$ A) 0 C) $\frac{\pi}{2}$ D) $\frac{\pi}{4}$ Answer: Option D **Explanation:** Using Property of Integration $\int_0^a f(x) dx = \int_0^a f(a - x) dx$ 37. Evaluate: $\int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt[3]{\tan x}} = \underline{\qquad}$ B) $\frac{\pi}{\frac{12}{12}}$ D) $\frac{\pi}{4}$ A) 0 C) $\frac{\pi}{2}$ Answer: Option B **Explanation:** Using Property of Integration: $\int_a^b f(x) dx = \int_a^b f(a + b - x) dx$ 38. Evaluate: $\int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cot x}} =$ _____. B) $\frac{\pi}{\frac{12}{12}}$ D) $\frac{\pi}{\frac{4}{12}}$ A) 0 C) $\frac{\pi}{2}$ Answer: Option B **Explanation:** Using Property of Integration: $\int_a^b f(x) dx = \int_a^b f(a+b-x) dx$

Page 53 of 81

39. Evaluate: $\int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\tan x}} =$ _____ B) $\frac{\pi}{6}$ A) 0 D) $\frac{\pi}{4}$ C) $\frac{\pi}{12}$ Answer: Option C **Explanation:** Using Property of Integration: $\int_a^b f(x) dx = \int_a^b f(a + b - x) dx$ 40. Evaluate: $\int_{1}^{4} \frac{\sqrt[3]{9-x}}{\sqrt[3]{9-x}+\sqrt[3]{x+4}} dx = _$ B) $\frac{1}{2}$ A) 3 C) $\frac{3}{2}$ D) 4 Answer: Option C **Explanation:** Using Property of Integration: $\int_a^b f(x) dx = \int_a^b f(a + b - x) dx$ 41. Evaluate: $\int_{3}^{7} \frac{(10-x)^2}{(10-x)^2 + x^2} dx =$ B) 2 A) 3 D) 4 C) 7 Answer: Option B **Explanation:** Using Property of Integration: $\int_a^b f(x) dx = \int_a^b f(a + b - x) dx$ 42. Evaluate: $\int_0^{\pi/2} \log(\tan x) \, dx =$ A) 0 B) 1 C) $\pi/_{2}$ D) none of these Answer: Option A **Explanation:** Using Property of Integration $\int_0^a f(x) dx = \int_0^a f(a - x) dx$ 43. Evaluate: $\int_0^{\pi/2} \log(\cot x) \, dx =$ _____. A) 0 B) 1 C) $\pi/3$ D) $\pi/2$ Answer: Option A **Explanation:** Using Property of Integration $\int_0^a f(x) dx = \int_0^a f(a-x) dx$ 44. If f(x) an even function then $\int_{-a}^{a} f(x) dx =$ B) $2 \int_{a}^{a} f(x) dx$ A) $\int_0^a f(x) dx$ C) 0 D) None of these Answer: Option B

45. If $f(x)$ an odd function then $\int_{-a}^{a} f(x) dx =$	=
A) $\int_0^a f(x) dx$	B) $2\int_0^a f(x) dx$
C) 0	D) None of these
Answer: Option C	
Explanation: Property of Integration	
46. Evaluate: $\int_{-1}^{1} \frac{1}{1+x^2} dx =$	
A) 0	B) $\frac{\pi}{2}$
C) $\tan^{-1}(1)$	D) $\frac{\pi}{4}$
Answer: Option B	
Explanation: Property of Integration: If $f(x)$ an even f	Function then $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$
47. Evaluate: $\int_{-1}^{1} \frac{x}{1+x^2} dx =$	
A) 0	B) $\frac{\pi}{2}$
C) $\tan^{-1}(1)$	D) $\frac{\pi}{4}$
Answer: Option A	
Explanation: Property of Integration: If $f(x)$ an odd fu	unction then $\int_{-a}^{a} f(x) dx = 0$
48. $\int_0^{2a} f(x) dx = \int_0^a f(x) dx + \int_0^a f($) dx
A) a – x	B) 2a – x
C) $a + b - x$	D) None of these
Answer: Option B	-1990
Explanation: Property of Integration: $\int_0^{2a} f(x) dx = \int_0^{2a} f(x) dx$	$\int_{0}^{a} f(x) dx + \int_{0}^{a} f(2a - x) dx$
49. Find the area bounded by the $\mathbf{y} = \mathbf{x}^3$ from $\mathbf{x} = 0$	0 to $\mathbf{x} = 3$ with $\mathbf{x} - \mathbf{axis}$.
A) $\frac{81}{4}$ sq. units	B) $\frac{27}{3}$ sq. units
C) 27 sq. units	D) 81 sq. units
Answer: Option A	
Explanation: Area = $\int_{x=a}^{x=b} y dx$	
50. Find the area bounded by the $\mathbf{y} = \mathbf{x}$, $\mathbf{x} - \mathbf{axis}$ a	and the ordinates $\mathbf{x} = 0$ to $\mathbf{x} = 4$.
A) 16 sq. units	B) 8 sq. units
C) 64 sq. units	D) 32 sq. units
Answer: Option B	
Explanation: Area = $\int_{x=a}^{x=b} y dx$	

51. Find the area between the lines $\mathbf{y} = 3\mathbf{x}$, $\mathbf{x} - \mathbf{a}\mathbf{x}\mathbf{i}\mathbf{s}$ and the ordinates $\mathbf{x} = 1$ and $\mathbf{x} = 5$.
A) 36 sq. units	B) 8 sq. units
C) 64 sq. units	D) 72 sq. units
Answer: Option A	
Explanation: Area = $\int_{x=a}^{x=b} y dx$	
52. Find the area bounded by the $y=3x^2$,	x - axis and the ordinates $x = 1$ to $x = 3$.
A) 8 sq. units	B) 26 sq. units
C) 4 sq. units	D) 27 sq. units
Answer: Option B	
Explanation: Area = $\int_{x=a}^{x=b} y dx$	
53. Find the area under the parabola $y^2 = 4$	${f k} {f x},$ bounded by the lines ${f x}={f 0}$, ${f y}={f 0}$ and ${f x}={f 0}$
A) $\frac{81}{4}$ sq. units	B) $\frac{27}{3}$ sq. units
C) 27 sq. units	D) $\frac{32}{3}$ sq. units
Answer: Option D	
Explanation: Area = $\int_{x=a}^{x=b} y dx$	
54. Find the area under the curve $\mathbf{y} = \mathbf{e}^{\mathbf{x}}$, \mathbf{x}	- axis and the ordinates $x = 0$ to $x = 1$.
A) $e - 1$ sq. units	B) e sq. units
C) 1 sq. units	D) 0 sq. units
Answer: Option A	Th-1990
Explanation: Area = $\int_{x=a}^{x=b} y dx$	
55. Using integration find the area of the circ	$cle\mathbf{x}^2+\mathbf{y}^2=9.$
A) 9 sq. units	B) 3 sq. units
C) 9π sq. units	D) 3π sq. units
Answer: Option C	
Explanation: Area = $\int_{x=a}^{x=b} y dx$	
56. Using integration find the area of the circ	cle $\mathbf{x}^2 + \mathbf{y}^2 = 16$ enclosed in the first quadran
A) 16 sq. units	B) 4 sq. units
C) 16π sq. units	D) 4π sq. units

57. Using integration find the area of the circle $x^2 + y^2 = r^2$ enclosed in the first guadrant. A) r^2 sq. units B) r sq. units C) $r^2\pi$ sq. units D) $r\pi$ sq. units Answer: Option D **Explanation:** Area = $\int_{x=a}^{x=b} y \, dx$ 58. Using integration find the area of the ellipse $b^2x^2 + a^2y^2 = a^2b^2$. A) $a\pi$ sq. units B) $b\pi$ sq. units C) $ab\pi$ sq. units D) $a\pi$ sq. units Answer: Option C **Explanation:** Area = $\int_{x=a}^{x=b} y dx$ 59. Using integration find the area of the ellipse $9x^2 + 4y^2 = 36$. A) 6π sq. units B) 9π sq. units C) 2π sq. units D) 4π sq. units Answer: Option A **Explanation:** Area = $\int_{x=a}^{x=b} y \, dx$ 60. Using integration find the area of the ellipse $36 x^2 + 4y^2 = 144$ above x-axis. A) 6π sq. units B) 12π sq. units D) 4π sq. units C) 3π sq. units Answer: Option A **Explanation:** Area = $\int_{x=a}^{x=b} y dx$ 61. Using integration find the area of the ellipse $36 x^2 + 4y^2 = 144$ enclosed in the first quadrant. A) 6π sq. units B) 12π sq. units D) 4π sq. units C) 3π sq. units Answer: Option C **Explanation:** Area = $\int_{x=a}^{x=b} y \, dx$ 62. Find the volume of the solid generated when the triangle bounded by the lines y = 0, y = x & x = 4 is revolved about x-axis. A) $\frac{64\pi}{3}$ cubic units B) 64π cubic units D) $\frac{32\pi}{2}$ cubic units C) 32π cubic units Answer: Option A **Explanation:** Area = $\pi \int_{x=a}^{x=b} y^2 dx$

ZEAL EDUCATION SOCIETY'S

ZEAL POLYTECHNIC, PUNE

NARHE | PUNE -41 | INDIA

Question Bank for Multiple Choice Questions

Program: Diploma in Computer Engineering	Program Code:-CO	
Scheme:-I	Semester:-II	
Course:- Applied Mathematics	Course Code:-22224	
04 – First Order First Degree Differential Equations	Marks: - 08	
Content of Chapter: -	TIOX	
4.1 Concept of differential equation		
4.2 Order, degree and formation of differential equ	uation.	
4.3 Solution of differential equation		
a) Variable separable form.		
b) Linear differential equation.		
4.4 Application of differential equations and relate	ed engineering problems.	
1. Which of the following is the first order and fin	rst-degree differential equation.	
a) $\frac{dy}{dx} = f(x, y)$ b) M(x, y) dx +	$\mathbf{N}(\mathbf{x},\mathbf{y})\mathbf{d}\mathbf{y}=0$	
A) only a)	B) only b)	
C) both a) & b)	D) none of these	
Answer: Option C		
Explanation: By definition of Differential equation a	nd Degree and order	

- 2. Compute the order and degree of the differential equation: $\frac{d^2y}{dx^2} = \left(1 + \left(\frac{dy}{dx}\right)^2\right)^3$
 - A) order = 3, degree = 2
 B) order = 2, degree = 2

 C) order = 1, degree = 3
 D) order = 2, degree = 1

Answer: Option D

Explanation: By definition of degree and order of differential equation.

3. Compute the order and degree of the differential equation: $\sqrt[3]{\frac{d^2y}{dx^2}} = \sqrt{\frac{dy}{dx}}$

A) order = 3, degree = 2B) order = 2, degree = 2C) order = 1, degree = 3D) order = 2, degree = 1

Answer: Option B

Explanation: By definition of degree and order of di	ifferential equation.	
4. Compute the order and degree of the differential equation: $\sqrt{1 + (\frac{dy}{dx})^2} = 5 \frac{d^2y}{dx^2}$		
A) order = 3, degree = 2	B) order = 2, degree = 2	
C) order = 1, degree = 3	D) order = 2, degree = 1	
Answer: Option B		
Explanation: By definition of degree and order of di	ifferential equation.	
5. Compute the order and degree of the different	tial equation: $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}} = \mathbf{k} \frac{d^2y}{dx^2}$	
A) order = 3, degree = 2	B) order = 2, degree = 2	
C) order = 1, degree = 3	D) order = 2, degree = 1	
Answer: Option B		
Explanation: By definition of degree and order of di	ifferential equation.	
6. Compute the order and degree of the different	tial equation: $\frac{d^3y}{dx^3} = \left[\mathbf{k} + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}$	
A) order = 3, degree = 2	B) order = 2, degree = 2	
C) order = 1, degree = 3	D) order = 2, degree = 1	
Answer: Option B		
Explanation: By definition of degree and order of di	ifferential equation.	
7. Compute the order and degree of the different	tial equation $\frac{d^2y}{dx^2} + 3 \left(\frac{dy}{dx}\right)^3 - 6y = 0$	

- B) order = 2, degree = 3A) order = 3, degree = 1
- D) order = 2, degree = 1C) order = 1, degree = 3

Answer: Option D

Explanation: By definition of degree and order of differential equation.

8. The order of differential equation formed by eliminating arbitrary constants from $y = Ae^{2x} + Be^{3x}$ is____.

A) 1	B) 2
C) 3	D) it can be 2 or 1.

Answer: Option B

Explanation: Order of differential equation is qual to the number of arbitrary constants exist in the general solution.

9. The order of differential	equation formed by eliminating arbitrary constants from $y^2 = 4$ ax is
A) 1	B) 2

C) 3	D) it can be 2 or 1.
------	----------------------

Answer: Option A

Explanation: By eliminating arbitrary constants

10. The order of differential equation formed by eliminating arbitrary constants from $y = A(x - A)^2$ is___.

A) 2 B) 1

Answer: Option C

Explanation: By eliminating arbitrary constants

11. The correct differential equation formed by eliminating arbitrary constants from $y = Ae^{x} + Be^{-x}$

is_____. A) $\frac{d^2y}{dx^2} + y = 0$ B) $\frac{d^2y}{dx^2} = -y$ C) $\frac{d^2y}{dx^2} - y = 0$ D) None of these

Answer: Option C

Explanation: By eliminating arbitrary constants

- 12. The correct differential equation formed by eliminating arbitrary constants from
 - $y = A \sin mx + B \cos mx$ is_____. (Where mis not arbitrary constant)A) $\frac{d^2y}{dx^2} + m^2y = 0$ B) $\frac{d^2y}{dx^2} + y = 0$ C) $\frac{d^2y}{dx^2} m^2y = 0$ D) None of these

Answer: Option A

Explanation: By eliminating arbitrary constants

13. The correct differential equation formed by eliminating arbitrary constants from

$$y = a \sin x + b \cos x \text{ is} ____.$$

$$A) \frac{d^2y}{dx^2} - y = 0$$

$$B) \frac{d^2y}{dx^2} + y = 0$$

$$C) \frac{d^2y}{dx^2} = y$$

$$D) \text{ None of these}$$

Answer: Option B

Explanation: By eliminating arbitrary constants

14. The correct differential equation formed by eliminating arbitrary constants from $y^2 = 4 ax$ is_____.

A)
$$2x \frac{dy}{dx} + y = 0$$

B) $2x \frac{dy}{dx} - y = 0$
C) $\frac{dy}{dx} = \frac{2x}{y}$
D) None of these

Answer: Option B

Explanation: By eliminating arbitrary constants

15. The particular solution of differential equati	on is obtained from its
A) Particular solution	B) Singular solution
C) General solution	D) None of these
Answer: Option C	
Explanation: By definition of particular solution	
16. The number of arbitrary constants appear in	n the general solution of differential equation are equal to
the	
A) degree of differential equation	B) order of differential equation
C) order and degree both	D) None of these
Answer: Option B	
Explanation: By concept of general solution of diff	ferential equation
17. The order of differential equation is equal to	o theexist in the solution.
A) no. of arbitrary constants	B) no. of pure constants
C) no. of variables	D) None of these
Answer: Option A	
Explanation: By concept of general solution of diff	ferential equation
18. The order of differential equation is equal to	o the no. of arbitrary constants exist in the
solution.	
A) Particular	B) General
C) Singular	D) None of these
Answer: Option B	
Explanation: By concept of general solution of diff	ferential equation
19. The general solution of differential equation	$n \frac{dy}{dx} - \cos x = 0$ is
A) $y = \sin x$	B) $y = \cos x$ D) $y = \sin x + c$
$C) y = \cos x + c$	$D)y=\sinx+c$
Answer: Option D	
Explanation: By variable separation method	
20. The particular solution of differential equati	on $\frac{dy}{dx} + \sin x = 0$ is
A) $y = \sin x$	$B) y = \cos x$
$C) y = \cos x + c$	$D)y=\sinx+c$
Answer: Option C	
Explanation: By variable separation method	

21. Solve: $(x + 1) dy + (y + 1) dx = 0$	
A) $(x + 1)(y + 1) = c$	B) $(x + 1) = c - (y + 1)$
C) $(y + 1) = c + (x + 1)$	D) $(x + 1) + (y + 1) = c$
Answer: Option A	
Explanation: By variable separation method	
22. Solve: $\mathbf{x} \mathbf{dy} - \mathbf{y} \mathbf{dx} = 0$	
A) $y = cx$	B)y=x+c
C) x = y + c	D) $xy = c$
Answer: Option A	
Explanation: By variable separation method	
23. Solve: $(1 + x^2)dy - (1 + y^2)dx = 0$	
A) $\tan^{-1} y = \tan^{-1} x + c$	B) $(y - x) = (1 - xy)c$
C) $\tan^{-1} y - \tan^{-1} x = \tan^{-1} c$	D) All above
Answer: Option A	
Explanation: By variable separation method	
24. Solve: $e^y \frac{dy}{dx} = x^2$	
A) $3e^y + x^3 = c$	$B) 3e^y - x^3 = c$
C) $3e^y = x^3c$	D) All above
Answer: Option B	
Explanation: By variable separation method	
25. Solve: $\sqrt{1-x^2} dy + \sqrt{1-y^2} dx = 0.$	-1996
$A)\sin^{-1}y = \sin^{-1}x + c$	B) $(y - x) = (1 - xy)c$
$C)\sin^{-1}y + \sin^{-1}x = c$	D) None of these

Answer: Option C

Explanation: By variable separation method

26. Solve:
$$x (1 + y^2) dx + y (1+x^2) dy = 0$$

A)
$$(1+x^2)(1+y^2) = c$$

C) $(1+x^2) - (1+y^2) = c$

Explanation: By variable separation method

27. Solve: $\cos x \cos y \, dx - \sin x \sin y \, dy = 0$

A)
$$\sin y \cos x = c$$

C) $\sin y - \cos x = c$
Answer: Option D

B) $(1+x^2) + (1+y^2) = c$ D) None of these

B) $\sin y + \cos x = c$ D) $\sin x \cos y = c$ Explanation: By variable separation method

28. Solve: $(e^{y} + 1) \cos x \, dx + e^{y} \sin x \, dy = 0$

A)
$$(e^{y} + 1) = \frac{c}{\cos x}$$

B) $\cos x = \frac{c}{(e^{y} + 1)}$
C) $(e^{y} + 1) = \frac{c}{\sin x}$
D) $\sin x + (e^{y} + 1) = c$

Answer: Option C

Explanation: By variable separation method

29. Find the Integrating Factor of $(1 + x^2) \frac{dy}{dx} + y = e^{tan^{-1}x}$ A) $e^{\tan^{-1}x}$ B) $\tan^{-1} x$ C) $1 + x^2$ D) None of these Answer: Option C Explanation: By method of solution of linear differential equation 30. The Integrating Factor of: $x \frac{dy}{dx} + y = x^3$ B) x A) e^y C) e^x D) None of these Answer: Option B **Explanation:** By using formula I. $F = e^{\int P(x)dx}$ 31. The Integrating Factor of: $x \log x \frac{dy}{dx} + y = 2 \log x$ A) $e^{\log x}$ B) x D) None of these C) log x Answer: Option C **Explanation**: By using formula I. $F = e^{\int P(x) dx}$ 32. The Integrating Factor of: $\frac{dy}{dx} + y \cot x = \csc x$ B) sin x A) $e^{\cot x}$ C) e^{sin x} D) None of these Answer: Option B Explanation: By using formula I. $F=e^{\int P(x)dx}$ 33. The general solution of Linear differential equation $\frac{dy}{dx} + Py = Q$ is_____. B) $y = \int I. F. \times Q \, dx + c$ A) $y \times I$. F. = $\int I$. F. $\times Q dx + c$ C) $y \times I$. F. = $\int Q dx + c$ D) None of these Answer: Option A

Explanation:-----

34. Solve: $\frac{dy}{dx} + y \cot x = \csc x$

A) $y + \sin x = c$	$B) y - \sin x = x + c$
$C) x + \sin x = y + c$	D) $y \cdot \sin x = x + c$

Answer: Option D

Explanation: By method of solution of linear differential equation and using formula

 $y \times I.F. = \int I.F. \times Q \, dx + c$

35. The Integrating Factor of: $\frac{dy}{dx} + y \tan x = \cos^2 x$

A) e^{tan x}

B) sec x

C) $e^{\log(\tan x)}$

D) None of these

Answer: Option B

Explanation: By using formula I. $F = e^{\int P(x) dx}$

36. The differential equation of L-R series circuit is_

A) $L\frac{di}{dt} + Ri = 0$ B) $\frac{di}{dt} + Ri = L$ C) $\frac{di}{dt} + Ri = 0$ D) $L\frac{di}{dt} + Ri = E$

Answer: Option D

Explanation: ------

- 37. The differential equation of L-R-C series circuit is_
 - A) $L\frac{di}{dt} + Ri + \frac{q}{c} = E$ B) $L\frac{di}{dt} + Ri + \frac{q}{c} = 0$ C) $\frac{di}{dt} + Ri + \frac{q}{c} = E$ D) $L\frac{di}{dt} + Ri + c = E$

Answer: Option D

Explanation: ------

38. The $y = e^{-x}$ is solution of the differential equation_____

$$A) \frac{d^2 y}{dx^2} - y = 0$$

$$B) \frac{d^2 y}{dx^2} + y = 0$$

$$C) \frac{d^2 y}{dx^2} = 0$$

$$D) \frac{dy}{dx} - y = 0$$

Answer: Option D

Explanation: ------

ZEAL EDUCATION SOCIETY'S

ZEAL POLYTECHNIC, PUNE

NARHE | PUNE -41 | INDIA

Question Bank for Multiple Choice Questions

Program: Diploma in Computer Engineering	Program Code:-CO
Scheme:-I	Semester:-II
Course:- Applied Mathematics	Course Code:-22224

05- Numerical Methods	Marks:-14
Content of Chapter: -	CALLON T
5.1: Solutions of algebraic equations.	
a) Bisection Method.	
b) Regula falsi Method.	
c) Newton Raphson Method.	
5.2: Numerical solutions of simultaneous equ	uations.
a) Gauss Elimination Method.	
b) Jacobi's Method.	
c) Gauss Seidal Method.	
A) Elimination method C) Iterative method Answer: Option C Explanation:	B) Reduction method D) Direct method
2. If approximate solution of the set of eq	uations,
2x+2y-z = 6,	
x+y+2z = 8 and	
-x+3y+2z = 4, is given by x = 2.8 y = 1 a	and z = 1.8. Then, what is the exact solution?
A) x = 1, y = 3, z = 2	B) x = 2, y = 3, z = 1
C) x = 3, y = 1, z = 2	D) x = 1, y = 2, z = 2
Answer: Option C	
Explanation: Substituting the approximate v	/alues x' = 2.8, y' = 1 z' = 1.8 in the given equations.

3. Solve the following equations by Gauss Elimination Method.

Answer: Option D

Explanation: By Gauss Elimination method

4 Apply Gauss Elimination method to solve the following equations.

2x - y + 3z = 9 x + y + z = 6 x - y + z = 2 A) X = -13, y = 1, z = -8 C) X = -13, y = 4, z = 15 B) X = 13, y = 1, z = -8 D) X = 5, y = 14, z = 5

Answer: Option D

Explanation: By Gauss Elimination method

5 Solve the following equation by Gauss Seidal Method up to 2 iterations and find the value of z.

27x + 6y - z = 85 6x + 15y + 2z = 72 x + y + 54z = 110

C) 1.88

B) 1.92 D) 1.22

Answer: Option B

A) 0

Explanation: From the given set of equations-

```
x=(85-6y+z)/27
```

```
y=(72-6x-2z)/15
```

y=(110-x-y)/54

5 Which of the following is an assumption of Jacobi's method?

A) The coefficient matrix has zeroes on its main diagonal

B) The coefficient matrix has no zeros on its main diagonal

C) The rate of convergence is quite slow compared with other methods

D) Iteration involved in Jacobi's method converges

Answer: Option B

Explanation:

7 Find the approximated value of x till 6 iterat	tions for x ³ -4x+9=0 using Bisection Method. Take a = -3 and
b = -2.	
A) -0.703125	B) -3.903125
C) -1.903125	D) -2.703125
Answer: Option D	
Explanation: Follow Iteration table.	
8 Find the positive root of the equation $x^3 - 4$	4x – 9 = 0 using Regula Falsi method and correct to 4
decimal places.	
A) 2.7506	B) 2.6570
C) 2.7065	D) 2.7605
Answer: Option C	
Explanation: $f(2) = -9$ and $f(3) = 6$. Therefore, root	ot lies between 2 and 3.
1 1 2 4	considering the initial approximation at x=1 then the value
of x ₁ is given as	
A) 1.85	B) 1.86
C) 1.87	D) 1.67
Answer: Option B	
Explanation: Iterative formula for Newton Raphs	on method is given by
$x(1) = x(0) + \frac{f(x(0))}{f'x(x(0))}$	
10 In Newton Raphson method if the curve f(>	() is constant then
A) f(x)=0	B) f'(x)=c
C) f''(x)=0	D) f'(x)=0
Answer: Option D	
Explanation: If the curve f(x) is constant then the	slope of the tangent drawn to the curve at an initial point is
zero. Hence the value of f'(x) is zero.	OLYTECHNIC
11 Gauss Seidel method is similar to which o	f the following methods?
A) Iteration method	B) Newton Raphson method
C) Jacobi's method	D) Regula-Falsi method
Answer: Option C	
Explanation:	

12 What is the main difference between Jacobi's and Gauss-Seidel?

- A) Computations in Jacobi's can be done in parallel but not in Gauss-Seidel
- B) Convergence in Jacobi's method is faster
- C) Gauss Seidel cannot solve the system of linear equations in three variables whereas Jacobi cannot
- D) Deviation from the correct answer is more in gauss Seidel

Answer: Option A

Explanation:

13 While solving by Gauss Seidel method, which of the following is the first Iterative solution system; x

B) (0.25,1)

2y = 1 and x + 4y = 4?	
A) (1, 0.75)	

C) (0,0) D) (1,0.65)

Answer: Option A

Explanation: Here,

x - 2y = 1

x + 4y = 4

For first iteration we put n = 0 in the following equations,

$$x_{n+1} = 1 - 2y_n$$

$$y_{n+1} = (1/4) (4 - x_{n+1})^{-1}$$

14 The Gauss-Seidel method is applicable to strictly diagonally dominant or symmetric_____

definite matrices.

C) Zero

D) Equal

Answer: Option A

Explanation:

15 Solve the following equation by Gauss Seidel Method up to 3 iterations and find the value of x.

4x - 3y - z = 40			1111
x - 6y + 2z = -28			
x - 2y + 12z = -86			
A) x=11.11		E	s) x=13.28
C) x=11.51		C) x=9.86

Answer: Option C

Explanation: From the given set of equations-

$$x = \frac{(40+3y+z)}{4}$$

$$y = \frac{(28+x+2z)}{6}$$

$$z = \frac{(-86-x+2y)}{2}$$

16 Find the values of x, y, z in the following system of equations by gauss Elimination Method.

2x + y - 3z = -10	
-2y + z = -2	
z = 6	
A) 2, 4, 6	B) 2, 7, 6
C) 3, 4, 6	D) 2, 4, 5

Answer: - Option A

Explanation: Solve by Gauss Elimination method.

17 The aim of elimination steps in Gauss elimination method is to reduce the coefficient matrix to	
--	--

A) diagonal	B) identity
C) lower triangular	D) upper triangular

```
Answer: - Option D
```

Explanation:

18 The Jacobi's method is a method of solving a matrix equation on a matrix that has no zeroes along _.

A) Leading diagonal	B) Last column
C) Last row	D) Non-leading diagonal

C) Last row

```
Answer: - Option A
```

```
Explanation: .....
```

19 How many assumptions are there in Jacobi's method?

A) 2	В) 3
C) 4	D) 5

Answer: - Option A

Explanation: There are two assumptions in Jacobi's method.

20 Solve the system of equations by Jacobi's iteration method.

20x + y - 2z = 173x + 20y - z = -182x - 3y + 20z = 25A) x = 1, y = -1, z = 1 B) x = 2, y = 1, z = 0C) x = 2, y = 1, z = 0D) x = 1, y = 2, z = 1

Answer: - Option A

Explanation:

21 Find the positive root of the equation 3x-cosx-1 using Regula Falsi method and correct up to 4 decimal places. A) 0.6701 B) 0.5071 C) 0.6071 D) 0.5701 Answer: - Option C Explanation: 22 Find the positive root of the equation $x^3 + 2x^2 + 10x - 20$ using Regula Falsi method and correct up to 4 decimal places. A) 1.3688 B) 1.3866 C) 1.4688 D) 1.6488 Answer: - Option A Explanation: 23 Find the positive root of the equation $e^x = 3x$ using Regula Falsi method and correct to 4 places. A) 0.6190 B) 0.7091 C) 0.7901 D) 0.6910 Answer: - Option A **Explanation**: f(0) = 1f (1) = -0.281718171 Therefore, root lies between 0 and 1. 24 The value of y'/x' in terms of the angle 0 is given by _____ A) tan θ B) sec θ D) cosec θ C) $\cot \theta$ Answer: - Option A Explanation: 25 The equation f(x) is given as x²-4=0. Considering the initial approximation at x=6 then the value of x₁ is given as _____ A) $\frac{10}{3}$ B) $\frac{4}{3}$ D) $\frac{13}{3}$ C) $\frac{7}{3}$ Answer: - Option A

Explanation: Solve by Iterative formula for Newton Raphson method.

26 For decreasing the number of iterations in I	Newton Raphson method:
A) The value of $f'(x)$ must be increased	B) The value of f''(x) must be decreased
C) The value of $f(x)$ must be decreased	D) The value of f'(x) must be increased
Answer: - Option A.	
Explanation:	
27 The convergence of which of the following	method depends on initial assumed value?
A) False position	B) Gauss Seidel method
C) Newton Raphson method	D) Euler method
Answer: - Option C	
Explanation:	
28 The equation $f(x)$ is given as $x^3+4x+1=0$. Co	nsidering the initial approximation at x=1 then the value
of x ₁ is given as	
A) 1.67	B) 1.87
C) 1.86	D) 1.85
Answer: - Option C	
Explanation:	
29 Using Bisection method find the root of 3x ²	
A) 0.617	B) 0.527
C) 0.517	D) 0.717
Answer: - Option C	
Explanation : Function $f(x) = 3x^2 - 5x - 2 = 0$. Then	follow Iteration table.
30 Find the root of $xe^{-x} - 0.3 = 0$ using Bisection	Method in the interval [1,5].
A) 1.68	B) 1.86
C) 1.88	D) 1.66
Answer: - Option B	
Explanation: By Iteration table.	
31 What is the percentage decrease in an inter	val containing root after iteration is applied by Bisection
Method?	
A) 20%	B) 30%
C) 40%	D) 50%
Answer: - Option D	

Explanation: The Bisection Method employs the reduction of any interval by 50% after each iteration. Hence it is also called as Binary Reduction method.

32 The algorithm provided to find the roots of the f	unction using Bisection Method is given by
A) Bolzano's theorem	B) Mean Value theorem
C) Bisection theorem	D) Secant theorem
Answer: - Option A.	
Explanation:	
33 The Bisection method has which of the following	g convergences?
A) Linear	B) Quadratic
C) Cubic	D) Quaternary
Answer: - Option A	
Explanation:	
34 Which of the following step is not involved in Ga	auss Elimination Method?
A) Elimination of unknowns	B) Reduction to an upper triangular system
C) Finding unknowns by back substitution	D) Evaluation of cofactors
Answer: - Option D.	
Explanation:	
35 How the transformation of coefficient matrix A to	o upper triangular matrix is done?
A) Elementary row transformations	B) Elementary column transformations
C) Successive multiplication	D) Successive division
Answer: - Option A.	
Explanation:	
36 How many types of pivoting are there?	
A) 2	B) 3
C) 4	D) 5
Answer: - Option A	
Explanation: There are two types of pivoting, namely, pa	artial and complete pivoting.
37 Why Gauss Elimination is preferred over other	methods?
A) Less number of operations are involved	B) Back substitution needed
C) Elimination of unknowns	D) Forms diagonal matrix form
Answer: - Option A.	
Explanation:	
38 In solving simultaneous equations by Gauss Jo	rdan method, the coefficient matrix is reduced to
matrix.	
A) Identity C) Upper triangular Answer: - Option B. Explanation:	B) Diagonal D) Lower triangular

39 While using Gauss Jordan's method, after all th	ne elementary row operations if there are zeroes left
on the main diagonal, then which of the following	ng is correct?
A) System may have unique solution	B) System has no solution
C) System may have multiple no. of finite sol.	D) System may have infinitely many sol.
Answer: - Option D	
Explanation:	
40 In which of the following both sides of equation	n are multiplied by non-zero constant?
A) Gauss Elimination Method	B) Gaussian Inconsistent procedure
C) Gaussian consistent procedure	D) Gaussian substitute procedure
Answer: - Option A	
Explanation:	
41 If it is provided that f(3) = 4 is one of the initial	points. What can be the choice of second point for
solving by Bisection Method?	
A) -5 such that f(-5) = -26	B) 0 such that $f(0) = 5$
C) -3 such that f(-3) = -2	D) 13 such that $f(13) = 2$
Answer: - Option C	
Explanation:	
42 A function is defined as $f(x) = x^3 - x - 11 = 0$. B	etween the interval [2,3] find the root of the function
by Bisection Method up to 8 iterations?	
A) 1.7334	B) 1.7364
C) 1.7354	D) 1.7344
Answer: - Option D	
Explanation:	
43 Find the positive root of the equation 3x+sinx-e	x using Regula falsi method and correct up to 4
decimal places.	
A) 0.4604	B) 0.4306
C) 0.3604	D) 0.4304
Answer: - Option C	
Explanation:	
44 Find the positive root of the equation xlogx = 1.	2 using Regula Falsi method and correct to 4 decimal
places.	
A) 2.7406	B) 2.4760
C) 2.5760	D) 2.4706
Answer: - Option A	
Explanation:	

45 Find the positive root of the equation $e^{-x} = \sin x$ using Regula Falsi method and correct up to 4

اممانه مام	
decima	places.

A) 0.585	B) 0.6685
C) 0.5885	D) 0.6885

Answer: - Option C

Explanation:

46 Find the positive root of the equation $x^3 + 2x^2 + 50x + 7 = 0$ using Regula Falsi method and correct to

4 decimal places.	
A) 0.14073652	B) 0.24073652
C) 0.42076352	D) doesn't have any positive root
Answer: - Option D	
Explanation:	
47 Find the positive root of the equation	e ^x = 3x using Regula Falsi method and correct to 4 places.
A) 0.6190	B) 0.7091
C) 0.7901	D) 0.6910
Answer: - Option D	
Explanation:	
48 The equation $f(x)$ is given as x^2 -4=0. (Considering the initial approximation at x=6 then the value of
next approximation corrects up to 2 c	lecimal places is given as
A) 3.33	B) 1.33
C) 2.33	D) 4.33
Answer: - Option A	oTD-190
Explanation:	
49 The Newton Raphson method fails if	
A) f'(x ₀)=0	B) f''(x ₀)=0 D) f'''(x ₀)=0
C) f(x ₀)=0	D) f'''(x ₀)=0
Answer: - Option A	
Explanation:	
50 Find the positive root of the equation	$x^3 - 4x + 9 = 0$ using Regula Falsi method and correct to 4
decimal places.	
A) 3.706698931	B) 2.706698931
C) 3.076698931	D) no positive roots
Answer:- Option B	
Explanation:	

51. The approximate root of the equat	tion $x^2 + x - 3 = 0$ in (1,2) by using Bisection method
A) 0.875	B) 0.75
C) 0.587	D) None of the above
Answer : Option A	
Explanation: If f(x) is continuous in the i	interval (a, b) such that f(a) and f(b) are of opposite sign then root
lies in between them.	
52. A real root of the equation $x^3 + 4$	x - 9 = 0 in the interval (1,2) by using Bisection method is
A) 0.587	B) 0.759
C) 0.875	D) None of the above
Answer : Option C	
	interval (a, b) such that f(a) and f(b) are of opposite sign then root
lies in between them.	
53. A The approximate root of the equ	uation $x^2 - 2x - 1 = 0$ in the interval (-1,0) by using Bisection
Method is	
A) 0.375	B) -0.375
C) 0.365	D) None of the above
Answer : Option B	
Explanation: If f(x) is continuous in the i	interval (a, b) such that f(a) and f(b) are of opposite sign then root
lies in between them.	
54. By using Bisection method the roo	ot of $x^3 - 9x + 1 = 0$ lies between 2 and 3 is
A)3.75	B) 4.75
C) 2.75	D) None of the above
Answer : Option C	
Explanation: If f(x) is continuous in the i	interval (a, b) such that f(a) and f(b) are of opposite sign then root
lies in between them.	
55. By Using Newton Raphson metho	d the approximate root of the equation $x^2 + x - 5 = 0$ is
A) 1.7914	B) 1.8914
C) 1.6914	D) None of the above
Answer : Option A	
Explanation: Use formula $x_{n+1} = x_n$	$-\frac{f(x_n)}{f'(x_n)}$
56. By Using Newton Raphson metho	d the approximate root of the equation $x^4 - x - 10 = 0$ is
A) 1.714	B) 1.854
C) 1.589 Answer : Option D	D) 1.785
Explanation: Use formula $x_{n+1} = x_n$	$-\frac{f(x_n)}{f(x_n)}$
	$J'(\lambda n)$

57. By Using Newton Raphson method the approximate root of the equation $x^3 - 2x - 5 = 0$ is---

B) 0.456

- A) 0.256
- C) 0.369 D) 0.258

Answer : Option A

Explanation: Use formula $x_{n+1} = x_n - \frac{f(x_n)}{f(x_n)}$

58. The solution of following system by using Gauss elimination method are----

$$x + 2y + 3z = 14$$
, $3x + y + 2z = 11$, $2x + 3y + z = 11$
A) 1,5,1 B) 2,4,3
C) 1,4,3 D) 4,2, -2

Answer : Option C

Explanation : Eliminate x from 2 and 3 equation and then find out the values of y and z, put these value in 1 to get value of x.

59. The solution of following system by using Gauss elimination method are----

10x + 2y + z =	9, $2x + 20y - 2z = -44, -2x + 3y + 10z = 22$
A) 3,2,1	B) 2,1,3
C) 1, -2,3	D) 1,3,2

Answer : Option C

Explanation : Eliminate x from 2 and 3 equation and then find out the values of y and z , put these value in 1 to get value of x.

60. The solution of following system by using Gauss elimination method are----

2x + y + z = 10,	3x+2y+3z=18,	x + 4y + 9z = 16
A) 3,8,9		B) 7,-9,5
C) 2,9,8		D) 1,3,2

Answer : Option B

Explanation : Eliminate x from 2 and 3 equation and then find out the values of y and z , put these value in 1 to get value of x.

61. The solution of following system by using Gauss elimination method are----

x+y+z=6,	3x+3y+4z=20,	2x + y + 3z = 13
A) 4,2,1		B) 1,2,3
C) 3,2,1		D) 3,1,2

Answer : Option D

Explanation : Eliminate x from 2 and 3 equation and then find out the values of y and z , put these value in 1 to get value of x.

62. The solution of following system by using Gauss elimination method are----

3x+y-z=3,	2x-8y+z=-5,	x - 2y + 9z = 8
A) 2,2,2		B) 3,3,3
C) 1,1,1		D) 3,1,2

Answer : Option C

Explanation : Eliminate x from 2 and 3 equation and then find out the values of y and z , put these value in 1 to get value of x.

63. The solution of following system by using Gauss elimination method are----

10x + y + z = 12,	2x+10y+z=13,	2x + 2y + 10z = 14
A) 2,2,2		B) 3,3,3
C) 1,1,1		D) 3,1,2

Answer : Option C

Explanation : Eliminate x from 2 and 3 equation and then find out the values of y and z , put these value in 1 to get value of x.

64. The solution of following system by using Gauss elimination method are----

3x + 4y - z = 8, -2x + y + z = 3,	x+2y-z=2
A) x = 1,y=1,z=1	B) x = 2,y=2,z=2
C) x = 3, y=3, z=3	D) x = 1, y=2, z=3

Answer : Option D

Explanation : Eliminate x from 2 and 3 equation and then find out the values of y and z , put these value in 1 to get value of x.

65. The solution of following system by using Gauss elimination method are----

2x + y + z = 10,	3x+2y+3z=18,	x + 4y + 9z = 16	
A) x=7,y=-9,z=5		B) x=7,y=6,z=5	
C) x=3, y=4, z=5		D) x=6, y=6, z=6	
	A REPORT OF A REPO	Contraction of the second s	

Answer : Option A

Explanation : Eliminate x from 2 and 3 equation and then find out the values of y and z , put these value in 1 to get value of x.

66. The solution of following system by using Gauss elimination method are----

2x - y + 2z = 2, $x + 10y - 3z = 5$,	x-y-z=3
A) x=2,y=0,z=-1	B) x=1,y=2,z=3
C) x=1, y=-1, z=3	D) x=-1, y=-2, z=-3

Answer : Option A

Explanation : Eliminate x from 2 and 3 equation and then find out the values of y and z, put these value in 1 to get value of x.

67. The solution of the following equations by using Gauss seidel method are----

10x + y + 2z = 13, 3x + 10y + z = 14, 2x + 3y + 10z = 15

A) x=1.0003512, y=1.0002112,z=0.999

C) x=3.00012,y=2.00036,z=3.000258

D) None of the above

B) x=1.00021,y=1.000232,z=3.000021

Answer : Option A

Explanation : First put y=z=0, and $x=\frac{d_1}{a_1}$ then in second iteration put x and z=0 we get value of y and in third

iteration use the values of x and y to get z. Repeat this procedure.

68. The solution of the following equations by using Gauss seidel method are----

15x + 2y + z = 18,2x + 20y - 3z = 19,3x - 6y + 25z = 22A) x=1.0003512, y=1.0002112, z=0.999B) x=1.00021, y=1.000232, z=3.000021

Answer : Option C

Explanation : First put y=z=0, and $x=\frac{d_1}{a_1}$ then in second iteration put x and z=0 we get value of y and in third iteration use the values of x and y to get z. Repeat this procedure.

69. The solution of the following equations by using Gauss seidel method are----

x+7y-3z=22,	5x-2y+3z=18,	2x - y + 6z = 22
A) x=1		B) x=2
C) x=3		D) x=0

Answer : Option C

Explanation : First put y=z=0, and $x=\frac{d_1}{a_1}$ then in second iteration put x and z=0 we get value of y and in third

iteration use the values of x and y to get z. Repeat this procedure.

70. The solution of the following equations by using Gauss seidel method are----

$$20x + y - 2z = 17$$
, $3x + 20y - z = -18$, $2x - 3y + 20z = 25$ A) x=1,y=1,z=1C) x=1,y=2,z=1D) x=1,y=1,z=3

Answer : Option B

Explanation : First put y=z=0, and $x=\frac{d_1}{a_1}$ then in second iteration put x and z=0 we get value of y and in third iteration use the values of x and y to get z. Repeat this procedure.

71. The solution of the following equations by using Gauss seidel method are----

10x + y + z = 12, 2x + 20y + z = 13, 2x + 2y + 10z = 14A) x=1, y=1, z=1B) x=1, y=-1, z=1C) x=1, y=2, z=1D) x=1, y=1, z=3

Answer : Option A

Explanation : First put y=z=0, and $x=\frac{d_1}{a_1}$ then in second iteration put x and z=0 we get value of y and in third iteration use the values of x and y to get z. Repeat this procedure.

72. The solution of the following equations by using Gauss seidel method are----

54x + y + z = 110, 2x + 15y + 6z = 72, -x + 6y + 27z = 85A) x =1.926, y=3.573, z=2.425 B) x=1, y=-1, z=1 C) x=1, y=2, z=1 D) x=1, y=1, z=3

Answer: Option A

Explanation: First put y=z=0, and $x=\frac{d_1}{a_1}$ then in second iteration put x and z=0 we get value of y and in third iteration use the values of x and y to get z. Repeated this procedure

73. The solution of the following equations by using Gauss seidel method are----

4x-3y+5z=34,	2x - y - z = 6, $x + y + 4z = 15$
A) x=4,y=-1,z=3	B) x=1,y=-1,z=1
C) x=1,y=2,z=1	D) x=1,y=1,z=3

Answer : Option A Explanation: First put y=z=0, and $x=\frac{d_1}{a_1}$ then in second iteration put x and z=0 we get value of y and in third iteration use the values of x and y to get z. Repeat this procedure

74. The solution of the following equations by using Gauss seidel method are----

2x - y + 5z = 15, 2x + y + z = 10, x + 3y + z = 10B) x=1,y=-1,z=1 A) x=1,y=2,z=3 D) x=1.v=1.z=3 C) x=1.v=2.z=1

Answer: Option A

Explanation: First put y=z=0, and $x=\frac{d_1}{a_1}$ then in second iteration put x and z=0 we get value of y and in third iteration use the values of x and y to get z. Repeat this procedure

75. The solution of the following equations by using Gauss seidel method are----

15x + 3y - 25z = 85,	2x + 10y + z = 51, x - 2y + 8z = 5
A) x=5,y=4,z=1	B) x=1,y=2,z=3
C) x=2,y=-3,z=1	D) x=1,y=1,z=3

Answer: Option A

Explanation: First put y=z=0, and $x=\frac{d_1}{a_1}$ then in second iteration put x and z=0 we get value of y and in third iteration use the values of x and y to get z. Repeat this procedure

76. By using Jacobi method the solution of the system of equations are---

5x + 2y + z = 12, $x + 4$	4y + 2z = 15, $x + 2y + 5z = 20$
A) x=2.4,y=3.75,z=4	B) x=3.4,y=4.75,z=4
C) x=3.5,y=4.75,z=4	D) None of the above

Answer : Option A

Explanation : First put x=y=z=0, then $x_1 = \frac{d_1}{a_1}$, $y_1 = \frac{d_2}{b_2}$, $z_1 = \frac{d_3}{a_3}$ Repeat the iterations

77. By using Jacobi method the solution of the system of equations are---

2x - y + 5z = 15, 2x + y + z = 7, x + 3y + z = 10A) 1,4,7 B) 1,2,3 C) 2,3,2 D) None of the above

Answer : Option B

Explanation : First put x=y=z=0, then $x_1 = \frac{d_1}{a_1}$, $y_1 = \frac{d_2}{b_2}$, $z_1 = \frac{d_3}{a_3}$ Repeat the iterations

78. By using Jacobi method the solution of the system of equations are---

5x + 2y + z = 12, $x + 4y + 2z$	= 15, $x + 2y + 5z = 20$
A) x=1.236,y=2.3669,z=3.366	B) x=1.236,y=2.369,z=123
C) x=1.084,y=1.95,z=3.164	D) None of the above

Answer : Option C

Explanation : First put x=y=z=0, then $x_1 = \frac{d_1}{a_1}$, $y_1 = \frac{d_2}{b_2}$, $z_1 = \frac{d_3}{a_3}$ Repeat the iterations

79. By using Jacobi method the solution of the system of equations are---

10x - y + 2z = 6, $-x + 11y + z = 22$, $2x - y + 10z = -10$		
A) x=1,y=2,z=1	B) x=1,y=1,z=1	
C) x=1,y=-2,z=-1	D) x=1,y=2,z=-1	

Answer : Option D

Explanation : First put x=y=z=0, then $x_1 = \frac{d_1}{a_1}$, $y_1 = \frac{d_2}{b_2}$, $z_1 = \frac{d_3}{a_3}$ Repeat the iterations

80. The solution of the system of equations by using Jacobi method are---

8x + 2y - 2z = 8, $x - 8y + 3z = -4$, 2x + y + 9z = 12
A) x=1,y=2,z=1	B) x=1,y=1,z=1
C) x=1,y=-2,z=-1	D) x=1,y=2,z=-1

Answer : Option C

Explanation : First put x=y=z=0, then $x_1 = \frac{d_1}{a_1}$, $y_1 = \frac{d_2}{b_2}$, $z_1 = \frac{d_3}{a_3}$ Repeate the iteration

Prepared By	Verified By	Re-Verified By	Approved By
Mr. Jadhav G. R.	Mr. Jadhav G. R.	Mr. Dhavan P. P.	Mr. Pathak S. R.
	Module Coordinator	Academic Coordinator	First Year Coordinator

