
Mobile Application Development

Unit- 3

Mrs. Chavan P.P.



ANDROID APPLICATION DIRECTORY 

STRUCTURE

some important files/folders, and their for the easy

understanding of the Android studio work environment

are shown in following figure.

Mrs. Chavan P.P.



Mrs. Chavan P.P.



AndroidManifest.xml:

• Every project in Android includes a manifest file, which

is AndroidManifest.xml, stored in the root directory of its project

hierarchy.

• The manifest file is an important part of our app because it

defines the structure and metadata of our application, its

components, and its requirements.

• This file includes nodes for each of the Activities, Services,

Content Providers and Broadcast Receiver that make the

application and using Intent Filters and Permissions,

determines how they co-ordinate with each other and other

applications.

Mrs. Chavan P.P.

https://www.geeksforgeeks.org/application-manifest-file-android/


Java: 

The Java folder contains the Java source code files.

These files are used as a controller for controlled UI

(Layout file). It gets the data from the Layout file and

after processing that data output will be shown in the UI

layout. It works on the backend of an Android

application.

Mrs. Chavan P.P.



drawable: 

A Drawable folder contains resource type file (something that

can be drawn). Drawables may take a variety of file like Bitmap

(PNG, JPEG), Nine Patch, Vector (XML), Shape, Layers, States,

Levels, and Scale.

layout:

A layout defines the visual structure for a user interface, such as

the UI for an Android application. This folder stores Layout files

that are written in XML language.

Mrs. Chavan P.P.



<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:orientation="vertical" >

<TextView android:id="@+id/text"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Hello, I am a TextView" />

<Button android:id="@+id/button"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Hello, I am a Button" />

</LinearLayout>
Mrs. Chavan P.P.



mipmap:

Mipmap folder contains the Image Asset file that can be used in

Android Studio application. You can generate the icon types like

Launcher icons, Action bar and tab icons, and Notification icons.

colors.xml:

colors.xml file contains color resources of the Android

application. Different color values are identified by a unique

name that can be used in the Android application program.

Mrs. Chavan P.P.



Below is a sample colors.xml file:

<?xml version="1.0" encoding="utf-8"?> 

<resources> 

<color name="colorPrimary">#3F51B5</color> 

<color name="colorPrimaryDark">#303F9F</color> 

</resources> 

Mrs. Chavan P.P.



strings.xml: 

The strings.xml file contains string resources of the Android 

application. The different string value is identified by a unique 

name that can be used in the Android application program. This 

file also stores string array by using XML language.

Below is a sample strings.xml file:

<resources> 

<string name="app_name">MM Polytechnic</string> 

</resources> 

Mrs. Chavan P.P.



styles.xml: 

The styles.xml file contains resources of the theme style in the 

Android application. This file is written in XML language. Below 

is a sample styles.xml file:

<resources> 

<!-- Base application theme. -->

<style name="AppTheme" 

parent="Theme.AppCompat.Light.DarkActionBar"> 

<!-- Customize your theme here. -->

<item 

name="colorPrimary">@color/colorPrimary</item> 

<item 

name="colorPrimaryDark">@color/colorPrimaryDark</item> 

</style> 

</resources> 

Mrs. Chavan P.P.



build.gradle(Module: app): 

This defines the module-specific build configurations. Here you 

can add dependencies what you need in your Android 

application.

Mrs. Chavan P.P.



Application components are the essential building blocks of an 

Android application. These components are loosely coupled by 

the application manifest file AndroidManifest.xml that describes 

each component of the application and how they interact.

Interface elements include but are not limited to:

Input Controls: checkboxes, radio buttons, dropdown lists, list 
boxes, buttons, toggles, text fields, date field

Navigational Components: breadcrumb, slider, search field, 
pagination, slider, tags, icons

Informational Components: tooltips, icons, progress bar, 
notifications, message boxes, modal windows

Containers: accordion

Components of Screen

Mrs. Chavan P.P.



Android introduces some new terminology for familiar

programming metaphors

❑ Views- Views are the basic User Interface class for visual

interface elements (commonly known as controls or widgets). All

User Interface controls, and the layout classes, are derived from

Views.

❑ ViewGroups- View Groups are extensions of the View class

that can contain multiple child Views. By extending the

ViewGroup class, you can create compound controls that are

made up of interconnected child Views. The ViewGroup class is

also extended to provide the layout managers, such as

LinearLayout, that help you compose User Interfaces.

❑ Activities- Activities represent the window or screen being

displayed to the user. Activities are the Android equivalent of a

Form. To display a User Interface, you assign a View or layout to

an Activity. Android provides several common UI controls,

widgets, and layout managers.

Fundamentals of UI Design

Mrs. Chavan P.P.



It is a type of resource which gives definition on what is drawn on the

screen or how elements are placed on the device’s screen and stored

as XML files in the /res/layout resource directory for the application. It

can also be a type of View class to organize other controls.

There are many types of layout. Some of which are listed below −

• Linear Layout

• Absolute Layout

• Table Layout

• Frame Layout

• Relative Layout

Layouts

Mrs. Chavan P.P.



Linear layout is further divided into horizontal and vertical layout.

It means it can arrange views in a single column or in a single

row. Here is the code of linear layout(vertical) that includes a

text view.

A layout that organizes its children into a single horizontal or

vertical row. It creates a scrollbar if the length of the window

exceeds the length of the screen

LINEAR LAYOUT

Mrs. Chavan P.P.



<?xml version=”1.0” encoding=”utf-8”?> 

<LinearLayout

xmlns:android=”http://schemas.android.com/apk/res/android” 

android:layout_width=”fill_parent” android:layout_height=”fill_parent” 

android:orientation=”vertical” > 

<TextView

android:layout_width=”fill_parent” 

android:layout_height=”wrap_content” 

android:text=”@string/hello” /> 

</LinearLayout>

Linear Layout

Mrs. Chavan P.P.



The AbsoluteLayout enables you to specify the exact location of

its children. It can be declared like this.

<AbsoluteLayout

android:layout_width=”fill_parent” 

android:layout_height=”fill_parent” 

xmlns:android=”http://schemas.android.com/apk/res/android” > 

<Button 

android:layout_width=”188dp” 

android:layout_height=”wrap_content” android:text=”Button” 

android:layout_x=”126px” android:layout_y=”361px” /> 

</AbsoluteLayout>

ABSOLUTELAYOUT

Mrs. Chavan P.P.



TABLELAYOUT

The TableLayout groups views into rows and columns. It can be 

declared like this.

<TableLayout

xmlns:android=”http://schemas.android.com/apk/res/android” 

android:layout_height=”fill_parent” android:layout_width=”fill_parent” > 

<TableRow> 

<TextView android:text=”User Name:” android:width =”120dp” /> 

<EditText android:id=”@+id/txtUserName” android:width=”200dp” /> 

</TableRow> </TableLayout>

Mrs. Chavan P.P.



RelativeLayout enforces to display elements in relations to each other. 

You can specify that, for instance, one UI element can be said to be 

placed on the left of another element, or on the bottom of another etc. 

Each UI element can also be positioned according to the layout’s 

borders (e.g. aligned to the right)

RELATIVELAYOUT

Mrs. Chavan P.P.



It can be declared like this.

<RelativeLayout

android:id=”@+id/RLayout” 

android:layout_width=”fill_parent” 

android:layout_height=”fill_parent”

xmlns:android=”http://schemas.android.com/apk/res/android” >

</RelativeLayout>

RELATIVELAYOUT

Mrs. Chavan P.P.



FRAMELAYOUT

The FrameLayout is a placeholder on screen that you can use to 

display a single view. It can be declared like this.

<?xml version=”1.0” encoding=”utf-8”?> 

<FrameLayout

android:layout_width=”wrap_content” 

android:layout_height=”wrap_content” 

android:layout_alignLeft=”@+id/lblComments”

android:layout_below=”@+id/lblComments”

android:layout_centerHorizontal=”true” >

<ImageView android:src = “@drawable/droid” 

android:layout_width=”wrap_content” 

android:layout_height=”wrap_content” /> 

</FrameLayout>
Mrs. Chavan P.P.



Sr.No View & description

1 layout_width

Specifies the width of the View or ViewGroup

2 layout_height

Specifies the height of the View or ViewGroup

3 layout_marginTop

Specifies extra space on the top side of the View or ViewGroup

4 layout_marginBottom

Specifies extra space on the bottom side of the View or ViewGroup

5 layout_marginLeft

Specifies extra space on the left side of the View or ViewGroup

6 layout_marginRight

Specifies extra space on the right side of the View or ViewGroup

7 layout_gravity

Specifies how child Views are positioned

8 layout_weight

Specifies how much of the extra space in the layout should be allocated to

the View

OTHER ATTRIBUTES THAT ARE COMMON IN ALL VIEWS AND VIEWGROUPS

Mrs. Chavan P.P.



Mrs. Chavan P.P.


