
Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 1 Mrs. Chavan P.P.

Unit-VI Security and Application Deployment

Course Outcome:

Publish Android applications.

Unit Outcomes:

6a. Explain the given location based service.

6b. Write the steps to customize the given permissions for users.

6c. Explain features of the given android security service.

6d. Write the steps to publish the given android App.

Contents:

6.1 SMS Telephony

6.2 Location Based Services: Creating the project, Getting the maps API key, Displaying

the map, Displaying the zoom control, Navigating to a specific location, Adding

markers, Getting location, Geocoding and reverse Geocoding, Getting Location data,

Monitoring Location.

6.3 Android Security Model, Declaring and Using Permissions, Using Custom

Permission.

6.4 Application Deployment: Creating Small Application, Signing of application,

Deploying app on Google Play Store, Become a Publisher, Developer Console

6.1 SMS Telephony

In android, we can send SMS from our android application in two ways either by using

SMSManager API or Intents based on our requirements.

If we use SMSManager API, it will directly send SMS from our application. In case if we

use Intent with proper action (ACTION_VIEW), it will invoke a built-in SMS app to send

SMS from our application.

Classes of SMS Telephony

1. Telephony.Sms.Conversations
Contains a view of SMS conversations (also referred to as threads).

2. Telephony.Sms.Draft

Contains all draft text-based SMS messages in the SMS app.

3. Telephony.Sms.Inbox
Contains all text-based SMS messages in the SMS app inbox.

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 2 Mrs. Chavan P.P.

4. Telephony.Sms.Intents
Contains constants for SMS related Intents that are broadcast.

5. Telephony.Sms.Outbox

Contains all pending outgoing text-based SMS messages.

6. Telephony.Sms.Sent
Contains all sent text-based SMS messages in the SMS app.

Android Send SMS using SMSManager API

In android, to send SMS using SMSManager API we need to write the code like as shown

below.

SmsManager smgr = SmsManager.getDefault();

smgr.sendTextMessage(MobileNumber,null,Message,null,null);

SMSManager API required SEND_SMS permission in our android manifest to send SMS.

Following is the code snippet to set SEND_SMS permissions in manifest file.

 <uses-permission android:name="android.permission.SEND_SMS"/>

Android Send SMS using Intent

In android, Intent is a messaging object which is used to request an action from another

app component such as activities, services, broadcast receivers, and content providers. To

know more about an Intent object in android check this Android Intents with Examples.

To send SMS using the Intent object, we need to write the code like as shown below.

Intent sInt = new Intent(Intent.ACTION_VIEW);

sInt.putExtra("address", new String[]{txtMobile.getText().toString()});

sInt.putExtra("sms_body",txtMessage.getText().toString());

sInt.setType("vnd.android-dir/mms-sms");

Even for Intent, it required a SEND_SMS permission in our android manifest to send SMS.

Following is the code snippet to set SEND_SMS permissions in manifest file.

 <uses-permission android:name="android.permission.SEND_SMS"/>

Now we will see how to send SMS in android application using SMSManager API with

examples.

Android Send SMS Example

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 3 Mrs. Chavan P.P.

Create a new android application using android studio and give names as

SendSMSExample. In case if you are not aware of creating an app in android studio check

this article Android Hello World App.

activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical" android:layout_width="match_parent"

 android:layout_height="match_parent">

 <TextView

 android:id="@+id/fstTxt"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginLeft="100dp"

 android:layout_marginTop="150dp"

 android:text="Mobile No" />

 <EditText

 android:id="@+id/mblTxt"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginLeft="100dp"

 android:ems="10"/>

 <TextView

 android:id="@+id/secTxt"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Message"

 android:layout_marginLeft="100dp" />

 <EditText

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 4 Mrs. Chavan P.P.

 android:id="@+id/msgTxt"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginLeft="100dp"

 android:ems="10" />

 <Button

 android:id="@+id/btnSend"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginLeft="100dp"

 android:text="Send SMS" />

</LinearLayout>

Now open our main activity file MainActivity.java from

\src\main\java\com.tutlane.sendsmsexample path and write the code like as shown

below

MainActivity.java

package com.tutlane.sendsmsexample;

import android.content.Intent;

import android.net.Uri;

import android.provider.Telephony;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.telephony.SmsManager;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

import android.widget.Toast;

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 5 Mrs. Chavan P.P.

public class MainActivity extends AppCompatActivity

{

 private EditText txtMobile;

 private EditText txtMessage;

 private Button btnSms;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 txtMobile = (EditText)findViewById(R.id.mblTxt);

 txtMessage = (EditText)findViewById(R.id.msgTxt);

 btnSms = (Button)findViewById(R.id.btnSend);

 btnSms.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 try{

 SmsManager smgr = SmsManager.getDefault();

smgr.sendTextMessage(txtMobile.getText().toString(),null,txtMessage.getText().toString(

),null,null);

 Toast.makeText(MainActivity.this, "SMS Sent Successfully",

Toast.LENGTH_SHORT).show();

 }

 catch (Exception e){

 Toast.makeText(MainActivity.this, "SMS Failed to Send, Please try again",

Toast.LENGTH_SHORT).show();

 }

 }

 });

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 6 Mrs. Chavan P.P.

 }

}

If you observe above code, we are sending SMS using SMSManager api on button click. As

discussed, we need to add a SEND_SMS permission in our android manifest.

Now open android manifest file (AndroidManifest.xml) and write the code like as shown

below

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.tutlane.sendsmsexample">

 <uses-permission android:name="android.permission.SEND_SMS"/>

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:roundIcon="@mipmap/ic_launcher_round"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <activity android:name=".MainActivity">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

If you observe above AndroidManifest.xml file, we added a SEND_SMS permissions in

manifest file.

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 7 Mrs. Chavan P.P.

Output of Android Send SMS Example

When we run above program in android studio we will get the result like as shown below.

Once you enter all details and click on Send SMS button it will send SMS and show the

alert message like as mentioned in above image. The above example we implemented

using SMSManager API. In case if we want to use Intents to send SMS to replace button

click code like as shown below.

btnSms.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 try{

 Intent i = new Intent(Intent.ACTION_VIEW);

 i.setData(Uri.parse("smsto:"));

 i.setType("vnd.android-dir/mms-sms");

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 8 Mrs. Chavan P.P.

 i.putExtra("address", new String(txtMobile.getText().toString()));

 i.putExtra("sms_body",txtMessage.getText().toString());

 startActivity(Intent.createChooser(i, "Send sms via:"));

 }

 catch(Exception e){

 Toast.makeText(MainActivity.this, "SMS Failed to Send, Please try again",

Toast.LENGTH_SHORT).show();

 }

 }

});

This is how we can send SMS using either SMSManager API or Intent objects in android

applications based on our requirements.

6.2 Location Based Services

Location Based Services are provided by Android through its location framework. The

framework provides a location API which consists of certain classes and interface. These

classes and interface are the key components which allow us to develop Location Based

Application in Android.

Classes and Interfaces of Location Based Services:

LocationManager – This class helps to get access to the location service of the system.
LocationListener – This interface acts as the listener which receives notification from
the location manager when the location changes or the location provider is disabled or
enabled.
Location – This is the class which represents the geographic location returned at a
particular time.

Android Google Map

Android provides facility to integrate Google map in our application. Google map displays
your current location, navigate location direction, search location etc. We can also
customize Google map according to our requirement.

Types of Google Maps

There are four different types of Google maps, as well as an optional to no map at all. Each
of them gives different view on map. These maps are as follow:

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 9 Mrs. Chavan P.P.

1. Normal: This type of map displays typical road map, natural features like river

and some features build by humans.

2. Hybrid: This type of map displays satellite photograph data with typical road

maps. It also displays road and feature labels.

3. Satellite: Satellite type displays satellite photograph data, but doesn't display road

and feature labels.

4. Terrain: This type displays photographic data. This includes colors, contour lines

and labels and perspective shading.

5. None: This type displays an empty grid with no tiles loaded.

Syntax of different types of map

1. googleMap.setMapType(GoogleMap.MAP_TYPE_NORMAL);

2. googleMap.setMapType(GoogleMap.MAP_TYPE_HYBRID);

3. googleMap.setMapType(GoogleMap.MAP_TYPE_SATELLITE);

4. googleMap.setMapType(GoogleMap.MAP_TYPE_TERRAIN);

Methods of Google map

Google map API provides several methods that help to customize Google map. These
methods are as following:

Methods Description

addCircle(CircleOptions options) This method add circle to map.

addPolygon(PolygonOptions options) This method add polygon to map.

addTileOverlay(TileOverlayOptions options) This method add tile overlay to the map.

animateCamera(CameraUpdate update) This method moves the map according to

the update with an animation.

clear() This method removes everything from the

map.

getMyLocation() This method returns the currently displayed

user location.

moveCamera(CameraUpdate update) This method reposition the camera

according to the instructions defined in the

update.

setTrafficEnabled(boolean enabled) This method set the traffic layer on or off.

snapshot(GoogleMap.SnapshotReadyCallback

callback)

This method takes a snapshot of the map.

stopAnimation() This method stops the camera animation if

there is any progress.

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 10 Mrs. Chavan P.P.

Google Map - Layout file

Now you have to add the map fragment into xml layout file. Its syntax is given below −

<fragment
 android:id="@+id/map"
 android:name="com.google.android.gms.maps.MapFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>

Google Map - AndroidManifest file

The next thing you need to do is to add some permissions along with the Google Map API
key in the AndroidManifest.XML file. Its syntax is given below −

<!--Permissions-->

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="com.google.android.providers.gsf.permission.
 READ_GSERVICES" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

<!--Google MAP API key-->

<meta-data
 android:name="com.google.android.maps.v2.API_KEY"
 android:value="AIzaSyDKymeBXNeiFWY5jRUejv6zItpmr2MVyQ0" />

Getting the maps API key

An API key is needed to access the Google Maps servers. This key is free and you can use
it with any of your applications. If you haven’t created project, you can follow the below
steps to get started:

Step 1: Open Google developer console and signin with your gmail
account: https://console.developers.google.com/project

Step 2: Now create new project. You can create new project by clicking on the Create
Project button and give name to your project.

Step 3: Now click on APIs & Services and open Dashboard from it.

https://abhiandroid.com/programming/googlemaps/
https://console.developers.google.com/project
https://abhiandroid.com/ui/button/

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 11 Mrs. Chavan P.P.

Step 4: In this open Enable APIS AND SERICES.

Step 5: Now open Google Map Android API.

Step 6: Now enable the Google Maps Android API.

Step 6: Now go to Credentials

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 12 Mrs. Chavan P.P.

Step 7: Here click on Create credentials and choose API key

Step 8: Now API your API key will be generated. Copy it and save it somewhere as we

will need it when implementing Google Map in our Android project.

Creating the project, displaying the map, displaying the zoom control

Step 1: Create a New Android Project and name it GoogleMaps.

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 13 Mrs. Chavan P.P.

Step 2: Now select Google Maps Activity and then click Next and finish.

Step 3: Now open google_maps_api.xml (debug) in values folder

Step 4: Here enter your Google Maps API key in place of YOUR_KEY_HERE.

Step 5: Now open build.gradle and add compile ‘com.google.android.gms:play-

services:8.4.0’ in dependencies

build.gradle code

apply plugin: 'com.android.application'

android {

 compileSdkVersion 26

 buildToolsVersion "26.0.2"

 defaultConfig {

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 14 Mrs. Chavan P.P.

 applicationId "com.abhiandroid.GoogleMaps.googlemaps"

 minSdkVersion 15

 targetSdkVersion 26

 versionCode 1

 versionName "1.0"

 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"

 }

 buildTypes {

 release {

 minifyEnabled false

 proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'

 }

 }

}

dependencies {

 compile fileTree(dir: 'libs', include: ['*.jar'])

 androidTestCompile('com.android.support.test.espresso:espresso-core:2.2.2', {

 exclude group: 'com.android.support', module: 'support-annotations'

 })

 compile 'com.android.support:appcompat-v7:26.+'

 compile 'com.google.android.gms:play-services:8.4.0'

 testCompile 'junit:junit:4.12'

}

Step 6: Now open activity_maps.xml and add a fragment code in it

Here add a fragment element to the activity’s layout file to define a Fragment object. In
this element, set the android:name attribute
to “com.google.android.gms.maps.MapFragment”. This automatically attaches
a MapFragment to the activity. The following layout file contains a fragment element:

activity_maps.xml code

<fragment android:id="@+id/map"

 android:name="com.google.android.gms.maps.SupportMapFragment"

 xmlns:android="http://schemas.android.com/apk/res/android"

https://abhiandroid.com/ui/xml/
https://abhiandroid.com/ui/fragment/
https://abhiandroid.com/ui/fragment/
https://abhiandroid.com/ui/fragment/

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 15 Mrs. Chavan P.P.

 xmlns:map="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context="com.abhiandroid.GoogleMaps.googlemaps.MapsActivity"/>

Step 6: Now define internet and location permissions in Android Manifest

INTERNET – To determine if we are connected to Internet or not.
ACCESS_FINE_LOCATION – To determine user’s location using GPS. It will give us precise
location.

AndroidManifest.xml code:

<?xml version="1.0" encoding="utf-8"?>

<manifest package="com.abhiandroid.GoogleMaps.googlemaps"

 xmlns:android="http://schemas.android.com/apk/res/android">

 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

 <uses-permission android:name="android.permission.INTERNET"/>

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <meta-data

 android:name="com.google.android.geo.API_KEY"

 android:value="@string/google_maps_key"/>

 <activity

 android:name="com.abhiandroid.GoogleMaps.googlemaps.MapsActivity"

 android:label="@string/title_activity_maps">

 <intent-filter>

 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>

 </intent-filter>

 </activity>

 </application>

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 16 Mrs. Chavan P.P.

</manifest>

Step 7: Now we will code MapsActivity.java file for inserting callbacks in Google Maps:

-OnMapReadyCallback: This callback is called when the map is ready to be used

@Override

public void onMapReady(GoogleMap googleMap) {}

-GoogleApiClient.ConnectionCallbacks: This callback is called whenever device is
connected and disconnected and implement onConnected() and
onConnectionSuspended() functions.

//When the connect request has successfully completed

@Override

public void onConnected(Bundle bundle) {}

//Called when the client is temporarily in a disconnected state.

@Override

public void onConnectionSuspended(int i) {

}

-GoogleApiClient.OnConnectionFailedListener: Provides callbacks for scenarios that
result in a failed attempt to connect the client to the service. Whenever connection is
failed onConnectionFailed() will be called.

@Override

public void onConnectionFailed(ConnectionResult connectionResult) {

}

-LocationListener: This callback have function onLocationChanged() that will be called
whenever there is change in location of device.

@Override

public void onLocationChanged(Location location) {}

-onMapReady(): This function is called when the map is ready to be used.

-buildGoogleApiClient(): This method is used to initialize the Google Play Services.

@Override

public void onMapReady(GoogleMap googleMap) {

 mMap = googleMap;

 mMap.setMapType(GoogleMap.MAP_TYPE_NORMAL);

https://abhiandroid.com/java/

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 17 Mrs. Chavan P.P.

 mMap.getUiSettings().setZoomControlsEnabled(true);

 mMap.getUiSettings().setZoomGesturesEnabled(true);

 mMap.getUiSettings().setCompassEnabled(true);

 //Initialize Google Play Services

 if (android.os.Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {

 if (ContextCompat.checkSelfPermission(this,

 Manifest.permission.ACCESS_FINE_LOCATION)

 == PackageManager.PERMISSION_GRANTED) {

 buildGoogleApiClient();

 mMap.setMyLocationEnabled(true);

 }

 } else {

 buildGoogleApiClient();

 mMap.setMyLocationEnabled(true);

 }

}

-addConnectionCallbacks(): You need to call registers a listener to receive connection
events from this GoogleApiClient.

-addOnConnectionFailedListener(): This methods adds a listener to register to receive
connection failed events from this GoogleApiClient.

-GoogleApiClient.Builder: Builder is used to help construct the GoogleApiClient object
and addApi () specify which Apis are requested by your app.

-mGoogleApiClient.connect(): A client must be connected before executing any
operation.

protected synchronized void buildGoogleApiClient() {

 mGoogleApiClient = new GoogleApiClient.Builder(this)

 .addConnectionCallbacks(this)

 .addOnConnectionFailedListener(this)

 .addApi(LocationServices.API)

 .build();

 mGoogleApiClient.connect();

}

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 18 Mrs. Chavan P.P.

-Zoom Controls: The Maps API provides built-in zoom controls that appear in the bottom
right hand corner of the map. These can be enabled by calling:

mMap.getUiSettings().setZoomControlsEnabled(true);

-Zoom Gestures:

ZoomIn: Double tap to increase the zoom level by 1.

Zoom Out: Two finger tap to decrease the zoom level by 1.

mMap.getUiSettings().setZoomGesturesEnabled(true);

-Compass: You can set compass by calling below method:

mMap.getUiSettings().setCompassEnabled(true);

-Changing the Map Type:

The Android Maps API provides normal, satellite, terrain and hybrid map types to help
you out:

mMap.setMapType(GoogleMap.MAP_TYPE_NORMAL);

mMap.setMapType(GoogleMap.MAP_TYPE_SATELLITE);

mMap.setMapType(GoogleMap.MAP_TYPE_TERRAIN);

mMap.setMapType(GoogleMap.MAP_TYPE_HYBRID);

MAP_TYPE_NORMAL : Represents a typical road map with street names and labels.

MAP_TYPE_SATELLITE: Represents a Satellite View Area without street names and
labels.

MAP_TYPE_TERRAIN: Topographic data. The map includes colors, contour lines and
labels, and perspective shading. Some roads and labels are also visible.

MAP_TYPE_HYBRID : Combines a satellite View Area and Normal mode
displaying satellite images of an area with all labels.

Map_TYPE_NONE : No tiles. It is similar to a normal map, but doesn’t display any labels
or coloration for the type of environment in an area.

Add the following inside setUpMap() just below the setMyLocationEnabled() call:

The location of the user is updated at the regular intervals. We have used
FusedLocationProvider. We have used requestLocationUpdates() method to get regular
updates about a device’s location. Do this in the onConnected() callback provided by
Google API Client, which is called when the client is ready.

LocationRequest mLocationRequest is used to get quality of service for location updates
from the FusedLocationProviderApi using requestLocationUpdates.

@Override

https://abhiandroid.com/ui/zoomcontrols/

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 19 Mrs. Chavan P.P.

public void onConnected(Bundle bundle) {

 mLocationRequest = new LocationRequest();

 mLocationRequest.setInterval(1000);

 mLocationRequest.setFastestInterval(1000);

 mLocationRequest.setPriority(LocationRequest.PRIORITY_BALANCED_POWER_ACCUR
ACY);

 if (ContextCompat.checkSelfPermission(this,

 Manifest.permission.ACCESS_FINE_LOCATION)

 == PackageManager.PERMISSION_GRANTED) {

 LocationServices.FusedLocationApi.requestLocationUpdates(mGoogleApiClient,

 mLocationRequest, this);

 }

}

Whenever user’s location is changed. For that Google has predefined function
onLocationChanged that will be called as soon as user’s location change. Here we are
getting the coordinates of current location using getLatitude() and getLongitude() and we
are also adding Marker.

Complete code of MapsActivity.java class:

package com.abhiandroid.GoogleMaps.googlemaps;

import android.Manifest;

import android.content.Context;

import android.content.pm.PackageManager;

import android.location.Address;

import android.location.Criteria;

import android.location.Geocoder;

import android.location.Location;

import android.location.LocationManager;

import android.os.Build;

import android.os.Bundle;

import android.support.v4.app.ActivityCompat;

import android.support.v4.app.FragmentActivity;

import android.support.v4.content.ContextCompat;

import android.widget.Toast;

import com.google.android.gms.common.ConnectionResult;

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 20 Mrs. Chavan P.P.

import com.google.android.gms.common.api.GoogleApiClient;

import com.google.android.gms.location.LocationListener;

import com.google.android.gms.location.LocationRequest;

import com.google.android.gms.location.LocationServices;

import com.google.android.gms.maps.CameraUpdateFactory;

import com.google.android.gms.maps.GoogleMap;

import com.google.android.gms.maps.OnMapReadyCallback;

import com.google.android.gms.maps.SupportMapFragment;

import com.google.android.gms.maps.model.BitmapDescriptorFactory;

import com.google.android.gms.maps.model.LatLng;

import com.google.android.gms.maps.model.Marker;

import com.google.android.gms.maps.model.MarkerOptions;

import com.abhiandroid.GoogleMaps.googlemaps.R;

import java.io.IOException;

import java.util.List;

import java.util.Locale;

public class MapsActivity extends FragmentActivity implements OnMapReadyCallback,

 GoogleApiClient.ConnectionCallbacks,

 GoogleApiClient.OnConnectionFailedListener,

 LocationListener {

 public static final int MY_PERMISSIONS_REQUEST_LOCATION = 99;

 GoogleApiClient mGoogleApiClient;

 Location mLastLocation;

 Marker mCurrLocationMarker;

 LocationRequest mLocationRequest;

 private GoogleMap mMap;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_maps);

 if (android.os.Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 21 Mrs. Chavan P.P.

 checkLocationPermission();

 }

 SupportMapFragment mapFragment = (SupportMapFragment)

 getSupportFragmentManager()

 .findFragmentById(R.id.map);

 mapFragment.getMapAsync(this);

 }

 @Override

 public void onMapReady(GoogleMap googleMap) {

 mMap = googleMap;

 mMap.setMapType(GoogleMap.MAP_TYPE_NORMAL);

 mMap.getUiSettings().setZoomControlsEnabled(true);

 mMap.getUiSettings().setZoomGesturesEnabled(true);

 mMap.getUiSettings().setCompassEnabled(true);

 //Initialize Google Play Services

 if (android.os.Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {

 if (ContextCompat.checkSelfPermission(this,

 Manifest.permission.ACCESS_FINE_LOCATION)

 == PackageManager.PERMISSION_GRANTED) {

 buildGoogleApiClient();

 mMap.setMyLocationEnabled(true);

 }

 } else {

 buildGoogleApiClient();

 mMap.setMyLocationEnabled(true);

 }

 }

 protected synchronized void buildGoogleApiClient() {

 mGoogleApiClient = new GoogleApiClient.Builder(this)

 .addConnectionCallbacks(this)

 .addOnConnectionFailedListener(this)

 .addApi(LocationServices.API)

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 22 Mrs. Chavan P.P.

 .build();

 mGoogleApiClient.connect();

 }

 @Override

 public void onConnected(Bundle bundle) {

 mLocationRequest = new LocationRequest();

 mLocationRequest.setInterval(1000);

 mLocationRequest.setFastestInterval(1000);

 mLocationRequest.setPriority(LocationRequest.PRIORITY_BALANCED_POWER_ACCU
RACY);

 if (ContextCompat.checkSelfPermission(this,

 Manifest.permission.ACCESS_FINE_LOCATION)

 == PackageManager.PERMISSION_GRANTED) {

 LocationServices.FusedLocationApi.requestLocationUpdates(mGoogleApiClient,

 mLocationRequest, this);

 }

 }

 @Override

 public void onConnectionSuspended(int i) {

 }

 @Override

 public void onLocationChanged(Location location) {

 mLastLocation = location;

 if (mCurrLocationMarker != null) {

 mCurrLocationMarker.remove();

 }

//Showing Current Location Marker on Map

 LatLng latLng = new LatLng(location.getLatitude(), location.getLongitude());

 MarkerOptions markerOptions = new MarkerOptions();

 markerOptions.position(latLng);

 LocationManager locationManager = (LocationManager)

 getSystemService(Context.LOCATION_SERVICE);

 String provider = locationManager.getBestProvider(new Criteria(), true);

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 23 Mrs. Chavan P.P.

 if (ActivityCompat.checkSelfPermission(this,

 Manifest.permission.ACCESS_FINE_LOCATION) != PackageManager.PERMISSION_
GRANTED &&

 ActivityCompat.checkSelfPermission(this, Manifest.permission.ACCESS_COARSE_
LOCATION)

 != PackageManager.PERMISSION_GRANTED) {

 return;

 }

 Location locations = locationManager.getLastKnownLocation(provider);

 List<String> providerList = locationManager.getAllProviders();

 if (null != locations && null != providerList && providerList.size() > 0) {

 double longitude = locations.getLongitude();

 double latitude = locations.getLatitude();

 Geocoder geocoder = new Geocoder(getApplicationContext(),

 Locale.getDefault());

 try {

 List<Address> listAddresses = geocoder.getFromLocation(latitude,

 longitude, 1);

 if (null != listAddresses && listAddresses.size() > 0) {

 String state = listAddresses.get(0).getAdminArea();

 String country = listAddresses.get(0).getCountryName();

 String subLocality = listAddresses.get(0).getSubLocality();

 markerOptions.title("" + latLng + "," + subLocality + "," + state

 + "," + country);

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 markerOptions.icon(BitmapDescriptorFactory.defaultMarker(BitmapDescriptorFacto
ry.HUE_BLUE));

 mCurrLocationMarker = mMap.addMarker(markerOptions);

 mMap.moveCamera(CameraUpdateFactory.newLatLng(latLng));

 mMap.animateCamera(CameraUpdateFactory.zoomTo(11));

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 24 Mrs. Chavan P.P.

 if (mGoogleApiClient != null) {

 LocationServices.FusedLocationApi.removeLocationUpdates(mGoogleApiClient,

 this);

 }

 }

 @Override

 public void onConnectionFailed(ConnectionResult connectionResult) {

 }

 public boolean checkLocationPermission() {

 if (ContextCompat.checkSelfPermission(this,

 Manifest.permission.ACCESS_FINE_LOCATION)

 != PackageManager.PERMISSION_GRANTED) {

 if (ActivityCompat.shouldShowRequestPermissionRationale(this,

 Manifest.permission.ACCESS_FINE_LOCATION)) {

 ActivityCompat.requestPermissions(this,

 new String[]{Manifest.permission.ACCESS_FINE_LOCATION},

 MY_PERMISSIONS_REQUEST_LOCATION);

 } else {

 ActivityCompat.requestPermissions(this,

 new String[]{Manifest.permission.ACCESS_FINE_LOCATION},

 MY_PERMISSIONS_REQUEST_LOCATION);

 }

 return false;

 } else {

 return true;

 }

 }

 @Override

 public void onRequestPermissionsResult(int requestCode,

 String permissions[], int[] grantResults) {

 switch (requestCode) {

 case MY_PERMISSIONS_REQUEST_LOCATION: {

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 25 Mrs. Chavan P.P.

 if (grantResults.length > 0

 && grantResults[0] == PackageManager.PERMISSION_GRANTED) {

 if (ContextCompat.checkSelfPermission(this,

 Manifest.permission.ACCESS_FINE_LOCATION)

 == PackageManager.PERMISSION_GRANTED) {

 if (mGoogleApiClient == null) {

 buildGoogleApiClient();

 }

 mMap.setMyLocationEnabled(true);

 }

 } else {

 Toast.makeText(this, "permission denied",

 Toast.LENGTH_LONG).show();

 }

 return;

 }

 }

 }

}

Output:

Now run the App. If you are connected to internet and provide access to your location
then in Map you will see your current location.

Navigating to a specific location,

Navigating to a destination is done using a NavController, an object that manages app
navigation within a NavHost. Each NavHost has its own
corresponding NavController. NavController provides a few different ways to navigate to
a destination, which are further described in the sections below.

To retrieve the NavController for a fragment, activity, or view, use one of the following
methods:

• NavHostFragment.findNavController(Fragment)

• Navigation.findNavController(Activity, @IdRes int viewId)

• Navigation.findNavController(View)

https://developer.android.com/reference/androidx/navigation/NavController
https://developer.android.com/reference/androidx/navigation/fragment/NavHostFragment#findNavController(androidx.fragment.app.Fragment)
https://developer.android.com/reference/androidx/navigation/Navigation#findNavController(android.app.Activity,%20int)
https://developer.android.com/reference/androidx/navigation/Navigation#findNavController(android.view.View)

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 26 Mrs. Chavan P.P.

After you've retrieved a NavController, you can call one of the overloads of navigate() to
navigate between destinations. Each overload provides support for various navigation
scenarios, as described in the following sections.

Adding markers,

Customizing Google Map

You can easily customize google map from its default view, and change it according to
your demand.

Adding Marker

You can place a maker with some text over it displaying your location on the map. It can
be done by via addMarker() method. Its syntax is given below −

final LatLng TutorialsPoint = new LatLng(21 , 57);
Marker TP = googleMap.addMarker(new MarkerOptions()
 .position(TutorialsPoint).title("TutorialsPoint"));

Changing Map Type

You can also change the type of the MAP. There are four different types of map and each
give a different view of the map. These types are Normal,Hybrid,Satellite and terrain.
You can use them as below

googleMap.setMapType(GoogleMap.MAP_TYPE_NORMAL);
googleMap.setMapType(GoogleMap.MAP_TYPE_HYBRID);
googleMap.setMapType(GoogleMap.MAP_TYPE_SATELLITE);
googleMap.setMapType(GoogleMap.MAP_TYPE_TERRAIN);

Enable/Disable zoom

You can also enable or disable the zoom gestures in the map by calling
the setZoomControlsEnabled(boolean) method. Its syntax is given below −

googleMap.getUiSettings().setZoomGesturesEnabled(true);

Apart from these customization, there are other methods available in the GoogleMap
class , that helps you more customize the map. They are listed below −

Sr.No Method & description
1 addCircle(CircleOptions options)

This method add a circle to the map
2 addPolygon(PolygonOptions options)

This method add a polygon to the map
3 addTileOverlay(TileOverlayOptions options)

This method add tile overlay to the map
4 animateCamera(CameraUpdate update)

This method Moves the map according to the update with an animation
5 clear()

This method removes everything from the map.

https://developer.android.com/reference/androidx/navigation/NavController#navigate(androidx.navigation.NavDirections)

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 27 Mrs. Chavan P.P.

6 getMyLocation()
This method returns the currently displayed user location.

7 moveCamera(CameraUpdate update)
This method repositions the camera according to the instructions defined in the
update

8 setTrafficEnabled(boolean enabled)
This method Toggles the traffic layer on or off.

9 snapshot(GoogleMap.SnapshotReadyCallback callback)
This method Takes a snapshot of the map

10 stopAnimation()
This method stops the camera animation if there is one in progress

Getting location

Appropriate use of location information can be beneficial to users of your app. For

example, if your app helps the user find their way while walking or driving, or if your app

tracks the location of assets, it needs to get the location of the device at regular intervals.

As well as the geographical location (latitude and longitude), you may want to give the

user further information such as the bearing (horizontal direction of travel), altitude, or

velocity of the device. This information, and more, is available in the Location object that

your app can retrieve from the fused location provider. In response, the API updates your

app periodically with the best available location, based on the currently-available location

providers such as WiFi and GPS (Global Positioning System). The accuracy of the location

is determined by the providers, the location permissions you've requested, and the

options you set in the location request.

Declare permissions

Apps that use location services must request location permissions. In most cases, you can
request the coarse location permission and still get reasonably accurate location
information from the available location providers.

The following snippet demonstrates how to request the coarse location permission:

<manifest ... >
 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />

</manifest>

Geocoding and reverse Geocoding

Geocoding is the process of converting addresses (like a street address) into geographic
coordinates (like latitude and longitude), which you can use to place markers on a map,
or position the map.

Reverse geocoding is the process of converting geographic coordinates into a human-
readable address.

https://developer.android.com/reference/android/location/Location
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient.html

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 28 Mrs. Chavan P.P.

Geocoding is the process of finding the geographical coordinates (latitude and longitude)

of a given address or location. Reverse Geocoding is the opposite of geocoding where a

pair of latitude and longitude is converted into an address or location.

For achieving Geocode or Reverse Geocode you must first import the proper package.

import android.location.Geocoder;

The geocoding or reverse geocoding operation needs to be done on a separate thread and

should never be used on the UI thread as it will cause the system to display an Application

Not Responding (ANR) dialog to the user.

To Achieve Geocode, use the below code

Geocoder gc = new Geocoder(context);

if(gc.isPresent()){

List<Address> list = gc.getFromLocationName(“155 Park Theater, Palo Alto, CA”, 1);

Address address = list.get(0);

double lat = address.getLatitude();

double lng = address.getLongitude();

}

To Achieve Reverse Geocode, use the below code

Geocoder gc = new Geocoder(context);

if(gc.isPresent()){

List<address> list = gc.getFromLocation(37.42279, -122.08506,1);

Address address = list.get(0);

StringBuffer str = new StringBuffer();

str.append(“Name: ” + address.getLocality() + “\n”);

str.append(“Sub-Admin Ares: ” + address.getSubAdminArea() + “\n”);

str.append(“Admin Area: ” + address.getAdminArea() + “\n”);

str.append(“Country: ” + address.getCountryName() + “\n”);

str.append(“Country Code: ” + address.getCountryCode() + “\n”);

String strAddress = str.toString();

}

Getting Location data

There are two types of location providers,

1. GPS Location Provider

2. Network Location Provider

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 29 Mrs. Chavan P.P.

Any one of the above providers is enough to get current location of the user or user’s

device. But, it is recommended to use both providers as they both have different

advantages. Because, GPS provider will take time to get location at indoor area. And, the

Network Location Provider will not get location when the network connectivity is poor.

Network Location Provider vs GPS Location Provider

• Network Location provider is comparatively faster than the GPS provider in

providing the location co-ordinates.

• GPS provider may be very very slow in in-door locations and will drain the mobile

battery.

• Network location provider depends on the cell tower and will return our nearest

tower location.

• GPS location provider, will give our location accurately.

Steps to get location in Android

1. Provide permissions in manifest file for receiving location update

2. Create LocationManager instance as reference to the location service

3. Request location from LocationManager

4. Receive location update from LocationListener on change of location

Provide permissions for receiving location update

To access current location information through location providers, we need to set

permissions with android manifest file.

<manifest ... >

 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

 <uses-permission android:name="android.permission. ACCESS_COARSE_LOCATION" />

 <uses-permission android:name="android.permission.INTERNET" />

</manifest>

ACCESS_COARSE_LOCATION is used when we use network location provider for our

Android app. But, ACCESS_FINE_LOCATION is providing permission for both providers.

INTERNET permission is must for the use of network provider.

https://javapapers.com/android/android-manifest/

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 30 Mrs. Chavan P.P.

Create LocationManager instance as reference to the location service

For any background Android Service, we need to get reference for using it. Similarly,

location service reference will be created using getSystemService() method. This

reference will be added with the newly created LocationManager instance as follows.

locationManager = (LocationManager) getSystemService(Context.LOCATION_SERVICE);

Request current location from LocationManager

After creating the location service reference, location updates are requested using

requestLocationUpdates() method of LocationManager. For this function, we need to

send the type of location provider, number of seconds, distance and the LocationListener

object over which the location to be updated.

locationManager.requestLocationUpdates(LocationManager.GPS_PROVIDER, 0, 0, this);

Receive location update from LocationListener on change of location

LocationListener will be notified based on the distance interval specified or the number

seconds.

Monitoring Location.

6.3 Android Security Model

The Android security model is primarily based on a sandbox and permission mechanism.
Each application is running in a specific Dalvik virtual machine with a unique user ID
assigned to it, which means the application code runs in isolation from the code of all
others applications. As a consequence, one application has not granted access to other
applications’ files.

Android application has been signed with a certificate with a private key Know the owner
of the application is unique. This allows the author of The application will be identified if
needed. When an application is installed in The phone is assigned a user ID, thus avoiding
it from affecting it Other applications by creating a sandbox for it. This user ID is
permanent on which devices and applications with the same user ID are allowed to run in
a single process. This is a way to ensure that a malicious application has Can not access /
compromise the data of the genuine application.

It is mandatory for an application to list all the resources it will Access during installation.
Terms are required of an application, in The installation process should be user-based or
interactive Check with the signature of the application.

https://javapapers.com/android/how-to-play-audio-in-android/

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 31 Mrs. Chavan P.P.

Declaring and Using Permissions

The purpose of a permission is to protect the privacy of an Android user. Android apps
must request permission to access sensitive user data (such as contacts and SMS), as well
as certain system features (such as camera and internet). Depending on the feature, the
system might grant the permission automatically or might prompt the user to approve
the request. (2)

Permissions are divided into several protection levels. The protection level affects
whether runtime permission requests are required. There are three protection levels that
affect third-party apps: normal, signature, and dangerous permissions.

Normal permissions cover areas where your app needs to access data or resources
outside the app’s sandbox, but where there’s very little risk to the user’s privacy or the
operation of other apps. For example, permission to set the time zone is a normal
permission. If an app declares in its manifest that it needs a normal permission, the
system automatically grants the app that permission at install time. The system doesn’t
prompt the user to grant normal permissions, and users cannot revoke these
permissions.

Signature permissions: The system grants these app permissions at install time, but
only when the app that attempts to use permission is signed by the same certificate as the
app that defines the permission.

Dangerous permissions cover areas where the app wants data or resources that involve
the user’s private information, or could potentially affect the user’s stored data or the
operation of other apps. For example, the ability to read the user’s contacts is a dangerous
permission. If an app declares that it needs a dangerous permission, the user has to
explicitly grant the permission to the app. Until the user approves the permission, your
app cannot provide functionality that depends on that permission. To use a dangerous
permission, your app must prompt the user to grant permission at runtime. For more
details about how the user is prompted, see Request prompt for dangerous permission.

Using Custom Permission

Apps can define their own custom permissions and request custom permissions from
other apps by defining <uses-permission> elements. To enforce your own

permissions, you must first declare them in your AndroidManifest.xml using one or

more <permission> elements.

For example, an app that wants to control who can start one of its activities could
declare a permission for this operation as follows:

<manifest

 xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.myapp" >

 <permission

 android:name="com.example.myapp.permission.DEADLY_ACTIVITY"

 android:label="@string/permlab_deadlyActivity"

https://developer.android.com/guide/topics/manifest/uses-permission-element
https://developer.android.com/guide/topics/manifest/permission-element

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 32 Mrs. Chavan P.P.

 android:description="@string/permdesc_deadlyActivity"

 android:permissionGroup="android.permission-group.COST_MONEY"

 android:protectionLevel="dangerous" />

 ...

</manifest>

The protectionLevel attribute is required, telling the system how the user is to be

informed of apps requiring the permission, or who is allowed to hold that permission,
as described in the linked documentation.

The android:permissionGroup attribute is optional, and only used to help the

system display permissions to the user.

You need to supply both a label and description for the permission. These are string

resources that the user can see when they are viewing a list of permissions

(android:label) or details on a single permission (android:description). The

label should be short; a few words describing the key piece of functionality the

permission is protecting. The description should be a couple of sentences describing

what the permission allows a holder to do. Our convention is a two-sentence

description: the first sentence describes the permission, and the second sentence

warns the user of the type of things that can go wrong if an app is granted the

permission.

Here is an example of a label and description for the CALL_PHONE permission:

<string name="permlab_callPhone">directly call phone numbers</string>

<string name="permdesc_callPhone">Allows the app to call

 phone numbers without your intervention. Malicious apps may

 cause unexpected calls on your phone bill. Note that this does not

 allow the app to call emergency numbers.</string>

6.4 Application Deployment:

Android application publishing is a process that makes your Android applications
available to users. Infect, publishing is the last phase of the Android application
development process.

https://developer.android.com/guide/topics/manifest/permission-element#plevel
https://developer.android.com/guide/topics/manifest/permission-group-element
https://developer.android.com/guide/topics/manifest/permission-element#label
https://developer.android.com/guide/topics/manifest/permission-element#desc
https://developer.android.com/reference/android/Manifest.permission#CALL_PHONE

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 33 Mrs. Chavan P.P.

Android development life cycle

Once you developed and fully tested your Android Application, you can start selling or
distributing free using Google Play (A famous Android marketplace). You can also
release your applications by sending them directly to users or by letting users download
them from your own website.

You can check a detailed publishing process at Android official website, but this tutorial
will take you through simple steps to launch your application on Google Play. Here is a
simplified check list which will help you in launching your Android application −

Step Activity

1 Regression Testing Before you publish your application, you need to make sure that

its meeting the basic quality expectations for all Android apps, on all of the devices that

you are targeting. So perform all the required testing on different devices including

phone and tablets.

2 Application Rating When you will publish your application at Google Play, you will

have to specify a content rating for your app, which informs Google Play users of its

maturity level. Currently available ratings are (a) Everyone (b) Low maturity (c)

Medium maturity (d) High maturity.

3 Targeted Regions Google Play lets you control what countries and territories where

your application will be sold. Accordingly you must take care of setting up time zone,

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 34 Mrs. Chavan P.P.

localization or any other specific requirement as per the targeted region.

4 Application Size Currently, the maximum size for an APK published on Google Play is

50 MB. If your app exceeds that size, or if you want to offer a secondary download, you

can use APK Expansion Files, which Google Play will host for free on its server

infrastructure and automatically handle the download to devices.

5 SDK and Screen Compatibility It is important to make sure that your app is designed

to run properly on the Android platform versions and device screen sizes that you want

to target.

6 Application Pricing Deciding whether you app will be free or paid is important

because, on Google Play, free app's must remain free. If you want to sell your

application then you will have to specify its price in different currencies.

7 Promotional Content It is a good marketing practice to supply a variety of high-

quality graphic assets to showcase your app or brand. After you publish, these appear

on your product details page, in store listings and search results, and elsewhere.

8 Build and Upload release-ready APK The release-ready APK is what you you will

upload to the Developer Console and distribute to users. You can check complete detail

on how to create a release-ready version of your app: Preparing for Release.

9 Finalize Application Detail Google Play gives you a variety of ways to promote your

app and engage with users on your product details page, from colourful graphics,

screen shots, and videos to localized descriptions, release details, and links to your

other apps. So you can decorate your application page and provide as much as clear

crisp detail you can provide.

Export Android Application Process

https://developer.android.com/tools/publishing/preparing.html

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 35 Mrs. Chavan P.P.

Apk development process

Before exporting the apps, you must some of tools

• Dx tools(Dalvik executable tools): It going to convert .class file to .dex file. it has
useful for memory optimization and reduce the boot-up speed time

• AAPT(Android assistance packaging tool):it has useful to convert .Dex file to.Apk

• APK(Android packaging kit): The final stage of deployment process is called as
.apk.

You will need to export your application as an APK (Android Package) file before you
upload it Google Play marketplace.

To export an application, just open that application project in Android studio and
select Build → Generate Signed APK from your Android studio and follow the simple
steps to export your application −

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 36 Mrs. Chavan P.P.

Next select, Generate Signed APK option as shown in the above screen shot and then
click it so that you get following screen where you will choose Create new keystore to
store your application.

Enter your key store path,key store password,key alias and key password to protect
your application and click on Next button once again. It will display following screen to
let you create an application −

Once you filled up all the information,like app destination,build type and flavours
click finish button While creating an application it will show as below

Finally, it will generate your Android Application as APK formate File which will be
uploaded at Google Play marketplace.

Google Play Registration

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 37 Mrs. Chavan P.P.

The most important step is to register with Google Play using Google Play Marketplace.
You can use your existing google ID if you have any otherwise you can create a new
Google ID and then register with the marketplace. You will have following screen to
accept terms and condition.

You can use Continue to payment button to proceed to make a payment of $25 as a
registration fee and finally to complete your account detail.

Once you are a registered user at Google Play, you can upload release-ready APK for
your application and finally you will complete application detail using application detail
page as mentioned in step 9 of the above mentioned checklist.

Signing Your App Manually

You do not need Android Studio to sign your app. You can sign your app from the
command line using standard tools from the Android SDK and the JDK. To sign an app in
release mode from the command line −

• Generate a private key using keytool

$ keytool -genkey -v -keystore my-release-key.keystore
-alias alias_name -keyalg RSA -keysize 2048 -validity 10000

• Compile your app in release mode to obtain an unsigned APK

• Sign your app with your private key using jarsigner

$ jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1
-keystore my-release-key.keystore my_application.apk alias_name

• Verify that your APK is signed. For example −

$ jarsigner -verify -verbose -certs my_application.apk

https://play.google.com/apps/publish/
https://docs.oracle.com/javase/6/docs/technotes/tools/windows/jarsigner.html

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 38 Mrs. Chavan P.P.

• Align the final APK package using zipalign.

$ zipalign -v 4 your_project_name-unaligned.apk your_project_name.apk

Steps steps to publish the Android application.
Step 1: Sign up. Sign up for an account on the Android Developer Console. ...

Step 2: Create a new application. ...

Step 3: Prepare multimedia. ...

Step 4: Prepare code for release. ...

Step 5: Build a release-ready APK. ...

Step 6: Upload APK. ...

Complete the checklist on the left until all the items have a green checkmark.

Step 1: Sign up

Sign up for an account on the Android Developer Console. Creating an account costs $25.

Step 2: Create a new application

• On the Developer Console select the Publish an Android Application option.

• Fill out the details: Title, Short Description, Full Description.

Step 3: Prepare multimedia

• Screenshots: I used the android emulator to take screenshots of my app.

• Hi-res icon: I used the launcher icon. It was an SVG file, so I converted it to PNG using
GIMP.

https://developer.android.com/tools/help/zipalign.html
https://play.google.com/apps/publish/signup/

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 39 Mrs. Chavan P.P.

• Feature graphic: This is an image that shows up on the top of the app download page in
Google Play on mobile phones.

Step 4: Prepare code for release

• Remove log statements.

• Remove the android:debuggable attribute from your manifest file. I didn’t have to do this
because Android Studio automatically sets this attribute based on the kind of APK its
building. Neat!

• Set the android:versionCode attribute in the manifest tag in manifest.xml. Two important
notes: (1) This must be an integer that increases with each release. (2) This number is not
displayed to users.
I chose “1”.

• Set the android:versionName attribute in the manifest tag in manifest.xml. This string is
shown to users and has no other purpose.
I chose “1.0”.

Step 5: Build a release-ready APK

The release-ready APK is different from the debug APK in that it is signed with certificate that is
owned by the developer. This is done to ensure that updates to the app come from a verified
source, i.e. a developer with access to the private key.

I recommend you follow the instructions here to create a signed APK.

• Android Studio -> Build -> Generate Signed APK

• A Java Keystore (JKS) is a repository of public-private key pairs.

• You must sign all APKs with the same key pair.

• Losing a key-pair consequences that you will not be able to push updates to your app.

Step 6: Upload APK

Go back to the Developer Console and click on Manage Releases. Then create a Production
Release and upload your signed APK.

https://developer.android.com/guide/topics/manifest/application-element.html#debug
https://developer.android.com/guide/topics/manifest/manifest-element.html
https://developer.android.com/guide/topics/manifest/manifest-element.html
https://developer.android.com/studio/publish/app-signing.html#release-mode
https://play.google.com/apps/publish/signup/

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 40 Mrs. Chavan P.P.

Google will perform a check on the APK. My app was using an SVG for the launcher icon, which
is no-bueno. I had to change it to PNG and recreate the signed APK.

Step 7:

Complete the checklist on the left until all the items have a green checkmark. The console re-
evaluates the checklist every time you click Save Draft in the top right.

You are now ready to publish

Developer Console

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 41 Mrs. Chavan P.P.

The Android Things Console provides easy and secure deployment of updates to your
connected devices. Google provides the infrastructure to host and deliver system and app
updates with the developer in final control.

Using the console, developers and device makers can:

• Download and install the latest Android Things system image

• Build factory images that contain OEM applications along with the system image

• Push over-the-air (OTA) seamless updates, including OEM applications and the system image,
to devices

• Manage and share OEM applications across products and owners

• Monitor informative analytics to understand how well products are performing

Add developer account users & manage permissions

There are three different access levels on the Play Console: account owner, admins, and
users. Your access type determines what actions you can take and what information you
can view on the Play Console.

Account access levels

Type Description
Account owner • First registered the account on the Play Console

• Has full access to the Play Console
• Can add users, manage individual permissions, and remove user

access
• Is the only person who can have a linked payments profile to sell

paid apps
• Is the only person who can edit information on the Payments

Settings page in the Play Console
• Is the only person who can edit Developer Profile information in the

Play Console

Admin • Has the "Manage user permissions" permission
• Can be given access to all or specific apps
• Can add users, manage individual permissions, and remove user

access

User • Can have different levels of access to the Play Console
• Can be given access to all or specific apps
• Can't invite new users or edit user permissions
• Doesn't need to pay the $25 registration fee

Give users access

Mobile Application Development Unit-VI Security and Application
Deployment

Department of Computer Engineering 42 Mrs. Chavan P.P.

Step 1: Decide whether your user needs global or per-app access

Before you set up permissions, you need to decide if your user needs global or per-app
access.

• Global: Global access applies to all apps in your developer account.
• Per-app: Per-app access only applies to the selected app.

For details on how global and per-app access impacts a specific permission, select the
permission below under "Permission definition & uses."

Step 2: Add users & turn permissions on or off

If you're an account owner or admin, you can add users to your Play Console account and
manage permissions across all apps or for specific apps.

1. Sign in to your Play Console.

2. Click Settings > Users & permissions.
• To add a user, select Invite new user and follow the onscreen instructions.
• To update permissions for an existing user, hover over their email address

and select the pencil icon .
• Note: Users can only sign in to the Play Console with a Google account using

the same email address that you invite.
3. Use the "Role" selector to choose a pre-defined role or use the checkboxes for

individual permissions.
4. Choose whether each permission applies to all apps in your developer account

("Global") or specific apps.
• To add an app to the permissions table, use the down arrow next to "Add an

app."
• To see details for each permission, review the permission definitions

section.
5. Click Send Invitation.

